HANDS ON
PARLOG FOR WINDOWS 1.0

A User’s Guide

qgsort

SortedLess =
[0,1,3,4]

LessN =
[1,3,4,0]

[5,1,7,9,3,
4,11,6,0]

Sorted =
[0,1,3,4,5,
6,7,9,11]

MoreN =
[7,9,11,6]

SortedMore =
[6,7,9,11]

Parallel Logic Programming Ltd.

Hands On Parlog for Windows 1.0

Tom Conlon
Steve Gregory

n

© PLP Ltd. 1995

January 1995

Parallel Logic Programming Ltd.
PO Box 49
Twickenham
TW2 5PH
United Kingdom

Telephone: (01454) 201652

© 1995 Parallel Logic Programming Ltd.

Contents

1 Introducing Parlog for WINAOWScceiieiieie ettt 1
1.1 SCOPE Of thiSGUIE.......ccueieieiiiieeeeeee e e 1

1.2 SYSLEIM OVEIVIEW.....ccuveciecieeie e etee et sttt et e e st e ae et e e ae e beeaaesseensesneesneensesnnenns 1

1.3 1f YOU @r@ UPGIradiNg.......coverierieriieiieieiesie ettt st 2

1.4 Installing Parlog fOr WINOWS..........coeiieiieie et 2

1.5 Running Parlog for WINGOWS..........cccoviiiiiiieieeeesiesese st 3

P 1 = 1o 0 U= =SS 5
2.1 A SIMPIE QUETY ...ttt ettt sb e nr e sn e 5

2.2 Displaying variable BINAINGS..........coveiiiieiice e s 5

G R = L U = a0 = g o S 6

2.4 Interrupting Parlog for WINAOWS............ccueiieiiiiericse et 7

2.5 Correcting and reCalling QUEMES..........oiiiirireesere st 7

3 Entering and running PrograimS.........cccueceerieeeeseeseeieesseesseseesseesseseesseessesssessesssessesssesssesseens 8
3.1 ENtering the PrOgraimc.ooiiieieeieieeesee sttt 8

3.2 SaVING thE PrOGraM......ccieceee ettt sttt et e e e st e e neene e reenesneeers 8

3.3 Loading the Program..........cccoeeeiieerieeeeese sttt 8

3.4 RUNNING thE PIrOOIaIMceiuieieeeie ettt ettt e e re e teeneesneenseennesreenns 9

3.5 Lazy and incremental COMPITEEION.........coiiiirerieieee e 9

3.6 Opening Program filES........oii e 10

3.7 CloSiNG Program WINAOWS..........cceruererierierereeeeneeseessessessesse s seseeseessessessessessessens 10

3.8 Direct 10ading and SAVINGcceiieiieieciese e ee et reene e 10

4 PrOQIraIM GIOUPS.cueeeureesueeereesseeareesseesseesseesseessesasessseeaneessessseessessseessesssesssnssnseessnssnesns 11
4.1 Creating aprogram QrOUPcceeeueeeesseessesieeseesseseesseessesssesseessesssssseessesssessssssessees 11

4.2 SAVING 8 PrOGraM GIOUD.....ccveuereerrerseasessesseesessessessessessessessessessessessessessessessessesnsenes 12

4.3 Opening aprogram QrOUPcceecueeeeseesresseeseesseseesseessesssssseessessssssesssesssesesssessees 12

5 Dynamic display of qUuery Variables............cooiiiiiiiieeeee s 13
5.1 INCIEMENLEI VIBW......coiviiiiieieieeiieiee ettt sttt nbe e nns 14

5.2 FIIM VIBW ..ttt ettt e s re e te e e ne e beentenneesseenne e 14

TG TS 7= 101 110 Y=Y 16

5.4 Combining dynamic display fOrMatS...........cceurieieeieninenese e 16

5.5 Pragmatics of dynamicC diSplayccceecueieeiiiie i 17

6 DEDUGUING TOOIS..... .ottt bbbt a et e s e e e b sresnenne s 18
6.1 Process monitoring and channel monitoringccceeveeeeieeveececceece e 18

6.2 Running the Primes Sieve eXample........coooeiiiieieeee e 19

(ST @ U= Y (=1 0o [OOSR 19

6.4 FIlIMING A CAIL ... 23

I e (005 SR 0)Y/ 1 S 24

6.6 SElECHIVE PrOCESS SPYING ...ecuveeereriertirierieeeeee ettt s e se e s b e b sbeene e eneas 25

6.7 Clearing ProCesS SPYPOINESccueeiieeieiiestieireeeesteesreseesteessesseesresssesseesseesesseessessenns 25

6.8 ChaNNEl SPYING ..ot r e ne e 26

6.9 Call contexts and selective channel SPYING........ccceeeeiieieciesecse e 28
6.9.1 "First-context” channel SPYING.......cccouereririeeiererese e 28

6.9.2 Selective channel SPYING.......ccccovieiieieceeece e 29

6.9.3 The QUICKSOrt eXamPle........coiiiriiieieee e 31

6.10 Clearing channel SPYPOINES.........cccoiiiieiieieieese e 32

6.11 Summary of ChanNEl SPYINGcooiiiiiiiieeee e 33

6.12 Pragmatics of debDUGQINGc.ocveiiieiiceceee e 34

6.12.1 The processtracing MOUE!cccceeiiieiereree e 34

6.12.2 Configuring thetrace modelccccceevveiiiciece e, 35

6.12.3 Traceable and regular COUE...........cooiriririieiee s 36

6.12.4 Lazy and eager reCoOmMpPilation..........ccccveeeieeneeiiesiese e 37

7 Incremental KeyDOArd INPULcoiiiiiee s 38
7.1 Programming interaCtiVe iNPULcccceiieiieiee et 38

7.2 Incremental iNEraCtiVe INPULc.oiiiiiiiieeeeee s 38

7.3 Asynchronous iNteraCtive iNPULccveiueiieieeie e eneens 39

7.4 Stream CharaCler INPULcooeeieieerese e 39

7.5 Thein Stream/L PrimMitiVe.......ccccoieiecieiece et 40

7.6 MUItIPIE INPUL SLIEAIMS......cviiiieieeeiee ettt nre s 41

8 The dataDase INTEITACEccvieiieeeee ettt sbe e 43
8.1 Entering a database PrOCEAUNE...........oieririeieiee ettt 43

8.2 Commands for database relationsS...........ccocevereririeiere e s 43

8.3 Interrogating database relatioNsS...........ccoerieieieieree s 44

O MISCEIlANEOUS TEALUIES.......ceiieeiisie ettt bbbt ee st 45
9.1 COMMENES IN PrOGIAIMIS.ccueeueeueeeerterteseessessesseeseeeessessessessessessesseeseeseesessesseseessesseas 45

9.2 QUENTES IN PrOGIAMS.....cccvieieereeiteeteeseesseeseeseessessesseesseessesseessessesseesseessessesssesnsesseens 45

9.3 Setting COMPIlEr AIFECHIVEScc.oiviiiiierieeeeee e 45

0.4 WINUOWS.....coiiieiiisiesieeiisee et sttt sttt st st e st sbe s be et e e e e e ntesaenbensennenneas 46

9.5 Configuring Parlog fOr WINGOWScouiieiirineseseseeesee et 46

9.6 Porting Parlog for Windows programs to other systems...........ccccceevveevevceecieennene, 47

10 SyntaXx @N0 SEMANTICS.ccueruirrerierierieeieiee ettt b e bt sseese e e e e s e sbeseesnesnenneas 48
10.1 Syntax Of CONJUNCLIONScccuiiiicieciie e sre e 48

10.2 SyntaX Of PrOGraMIS.....cc.ceeeeereeierierte sttt et e s e bbb sresneeaeens 48

10.3 EXAIMPIES....cveeiieieitie ettt sttt st ae e e te e e sse e se e e e sre e teeneesneeseeneenneenes 49

10.4 OPEIBIOIS.......eiiueeteeeesieeste ettt e s b e sh e s s e e s e s s e e b e s e e s seenneennesne e rennnennes 50

10.5 BNF sSyntax definition.........cccceiiiiieieeiece et nnes 51

10.6 Operational SEMANLICS.cceiirerireeierierie sttt besse e e e neesnenreas 52
10.6.1 Matching and guard EXECULION...........cccieeiuieeesiecie e et 52

10.6.2 Concurrency in Parlog for WindOWS...........cccoeriiineninineesesese s 53

10.6.3 Fair and-parall€liSmMccoveeiieie e 54

10.6.4 Fair or-parall&liSmMccooiiiiiiieeeese e 54

10.6.5 BUSY WAIINGeecueeiieieciee e cite e sttt ee et s esaeeeesneesseenesneens 55

10.6.6 Viewing the scheduler's DENAVIOUNcccooeiiriiirenieeeeee e 55

10.6.7 Tuning the scheduler's behaviourccccceiveceiiciececeee e 55

10.6.8 Execution speed and hOw tO INCrease it.........ccocvverereeieeienesese e 56

10.6.9 Minimizing evaluation MEMOIY USE.........cciveiuereeieeireseeseeseeseesseessesnens 56

10.6.10 MiNIMIZING COUE SIZE.......ccuuruiriiiririeeiieieeeie et 56

11 ETON IMESSAGES. .. eeiiteeeiiieeiteeesiteeesstesssstesssbeeesbe e e sbee e sbe e s sabee e sabe e e sabeeessseeeaseeeesaeesseeesnennns 58
11.1 Program SIIUCLUIE ITOISc.eeireerieerreereesee e ssee s e seesneesneesneesnnesneesnessneennnes 58
I I R @ U1 = 4 o £ TSSO 58

11.0.2 PrOCEOUIE EITOIS. ... cciteeeeeieesteeeesseesteeeesseesseeseesseesseseesseessessessseessessesssesnsens 58

11.1.3 DIrECLIVE EITOIS ...ccuiieeeiieieeieee e sie et sttt s eeneesbesaesrenreas 59

11.2 COMPIIEN EITOIS.....iieiieieiieeeee ettt ettt e b b ae e 59

11.3 RUN-TIME ETOIS....uiiteitietieiieie ettt sttt st bt e ste st e sbesbenreesenne e 59

A Y 1= o 0PRSS 62
2 R I o TSN L L 1 01, LU TR 62

12.1.1 TRENEW... OPLION ...ttt 62

12.1.2 The OPEN... OPLION ...ttt sn e sb e 62

12.1.3 The New Group... OPLIONcccieeiieeie e eee s ee et ee e ae e nne s 62
12.1.4 The Open Group... OPLIONcceeeeieiereesie e 62
12.1.5 The SaVe All OPLION ...c..icee et 63
12.1.6 The Close All OPLION.......cciiieree e 63
12.1.7 ThE EXIt OPLIONccveeiicie ettt ste ettt e e sreeneeneens 63

2 N 1Y o [1 0= 0 O OO 63
12.3 THE SEACH MENU ...eeee ettt e et e e e e e e s s e te e e s ssereeeesssreeesssasseeessaans 63
12.3.1 ThE FING OPLION.....ccuiitiiiiieieieee et 63

12.4 THE RUN MEBNU......eveiiieeteiie e ieeeeee s e et e e e seaeeesseesseeessssaeessssssessssassseessasssseessassseessasns 64
12.4.1 The Load All OPLION.ooiiieiesieeeeee e 64
12.4.2 The QUIT OPLION......cceeiiicieceecte ettt esreenesneen 64
12.4.3 The Tidy WindOWS OPtiON........ccceeireeieieieiesiesie e 64

12.5 THEWINCUOW MENU .eoiieveiie ettt e ettt e e s eeree e e s esbeeasssaraseessasseeessssbeeeessasnesssans 64
12.5.1 The Castade OPLION.........cccurererieieierie ettt 64
12.5.2 TheTil@ OPLIONoocveeieee ettt e 65
12.5.3 The Arrange ICONS OPLIONccueverierierieeieeeee e 65
12.5.4 The |OWEN SECHION.oiiiiiiieitirieeieee ettt st 65

13 PrIMUTIVES.eeitieie ettt ettt e e e b e teese e sseeseeseesseeteeneesreenseeneesseeaeensenneens 66
13.1 ArithmetiC PrimMItIVES.......cceeieceece e 66
XA TS EXPIESSION? ...ttt bbbt e e e b e nne e 66

B2 mim B2 e et 66

e e 66

R TR 66

I TS 67
e SRR 67

I S 67

13.2 Unification related primitiVeS.........ccceciiiieceecece e 67
TOIML? = TEIMZ2? .ot e s b e st be et eeas 67
TOML?2\Z TEIMZ2? ettt ettt e sae e 67
TEIML? == TEIMZ2? ..ttt sttt ae e s neas 68
SAME(TEIML?, TEMMZ2?) ...ttt e e r e e 68
TEIML? K= TEIMZ2? ..ttt st sa et be e e e neas 68

V= (L= £ 017 SR 68
NONVAN(TEMN?) .ottt bbbt nnesn b e 69

(0= 2= (L= 1 117 OSSR 69
OrOUNT(TEM?) ettt e bbbt e e nre e 69

13.3 Type cheCKing PrIMITIVESccoiiie ettt 69
BEOM(TEIMM?) et b b bbb e e se e 69

L1 o1 L (=1 101 PSSR 69
FIOBL(TEITND) .ttt b e e e 69
0101011 (= 1 101 USSP 69
AEOMIC(TEIM?) ettt bbbt bt e e e e 69

13.4 MetaleVel PrIMItIVES.......c.coeeiece e 70
ATG(N?, TEIM2ATTY) oo 70
functor(Term?,FUNCLOr 2 ATIEY?) oo 70
1= 0 1 I S 70
NAME(ALOMIC?,SEMNG?) .ecveeieceee e sreenre e e sneenne s 71

CAL(ATOMS?ALOM™) ...ttt bbb e ne e 71

135

13.6

13.7

13.8

139

VASIN(TEM2VAISY) ..o 71

toground(Term?,Gterm”™,VarNameS™)ccceieereeieeeesie e esre e s 71
tohollow(Gterm?, Term™,VarnameS?)ccccceveereeeeneene e seesee e s 72
CONLrol PriMITIVES.ocueeieicie e re e e e sreeeesneenaean 72
LU0 LTRSS PR 72
=1 ST 72
010100 o ROV 72
(o 11 (@] 10 ISR 72
Call (Conj?2,StEtUS™,CONLIOI?) ...t 73
Database PIrIMITIVEScccuieieceeeeee st sreesre e sneenne s 73
Set(Solnlist®, TErM?2,DDCAI?) ..o s 73
subset(Solnlist?, Term?2,DDCall?). ..o 74
INput and OUEPUL PrMITIVES.........c.oiiriiiirienieeeeee e 74
=720 (IS0 1 TSSO 75
read(Channel 2, TEIMYY) ..o 75
[0 1S S,V KA TS 75
01 (0 A TSSO 75
[0 1S (0 (@=L S 75
01 (N LA SO TSSS 76
[0 TS ((©1 70T 1 B N TS 76
S (] 01V ISR 76
05 (] 1@ 1= 001 2 AN S 76
0read(Channel 2, TEIMMY) ... 76
KEY (N ettt ettt ettt b bbbttt et et ae b reene e 76
IN_SIrEAM(SIIEAMY) ...ttt 77
IN_SIrEAMS(SIFEAIMS?) ... ccvecie ettt e ee e sre e e sneenne s 77
LS QI 1011 TP 78
WHLE(ChaNNEl 2, TEIM?) ... 78
WITTEG(TEITND) ettt b et e et e e e sne e 78
WHLEQ(ChanNel 2, TEM?) ..o re e 78
iSPIAY (TEIMN?) ..t 78
display(Channel 2, TEIM?)......coo it 78
USSR 78
01K 7= 7= e OSSPSR 78
PUE(N?) ettt bbbttt ettt et bbb ne e 79
PUL(ChaNNEI2N?) ...t e e e nne s 79
122 o] (11 S 79
tAD(ChaNNEI2N?) ... e 79
INCWIITE(ChanNEl 2, TEIM?) ... 79
File, window, and dialog handling primitiVeS.........cccccereevieieseeseece e 79
OPEN(FTTE?) .ttt 80
(o 1= (= (] =27 ISR 80
crwind(Name?,R?,C?2,Depth? Width?)cccoeoviieieeeee e 80
CUWINA(NGIME?) ...ttt et r e e e s re b e e neeeree e 80
CIOSE(NEITIE?) ...ttt e e 80
dialog(Name?,Message?,0ptions?,SEleCtion™)ccccveceveeveeeeceece e 80
LR L= (=7 S 81
Program handling PrimitiVEScoieie e 81

10BA(CHENNEL?) ... e 81

1 (] o PSPPSR 81

[IStING(REIALIONS?) ...ttt neeneen 82
SAVE(CNENNEL). et 82
SAVE(Channel 2, REGLONS?).......cceoiieeceece e 82
LT R (0] 1= IS 82
FRINITTAIIZE ...ttt e bbb 82
AefiNEA(REIGLTION?) ... se e eneas 82
13.10 Compilation PrimitiVES.........cceiieiieiie et e e e ene s 82
COMPITE <ttt e et nenre s 83
L1215 (010 L= TSP 83
13.11 Debugging PriMITIVESceceeieiirierieriesie st 83
L= 0O SURTPROPRURPTRPRPR 84
NMOLMBICE. ...ttt ettt ettt ettt e e st e et e e ae e e ne e e ene e e sane e e sabe e e sabe e e saneeeenneeennneeaas 84
(01 oo SO 84
101076 = o 0o 1HN PSSP P PP 84
S 0V R (= = 0] 1SS 84
NOSPY REIGLTONT ... e e 84
001 o)V USSR 84
debug_options(Suspend?,Reduce?,SUCCERA?Y)coerireeieeee e 85
WINAOW _EDUG.eeveeiecee ettt et e e e e ae e nreereenne e 85
NOWINAOW _JEIDUG. ...ttt sb e 85
windows(S?,R?,C?,Depth? WIidth?)ccoooiee e 85
13.12 DireCtiVe PITMITIVESecueeieeeeierieste sttt ss e e b b s 85
OPLIMIZE VAIUB?.......ooeeeeeee ettt ettt ne e ns 86
OptiMIZE(REIGEION?,VAIUE?) .. e 86
EPEN VAIUB? ...ttt et ens 86
depth(REEHON?,VEIUE?) ..o s 86
13.13 MisCallaneouS PIrIMITIVES........c.ccveiiiieecieiie e esre e 87
L= = (S R T o o N L S S 87
remeMBDEr (A2, TEIM?) ...t e ene s 87
FECAI(IA?, TEITNY) <.t 87
op(Precedence?, TYPE?,NAME?).......ccceiieeece ettt 87
current_op(Precedence?, Type?,Name?,0PS™)ccocvererieererieeieeieeeeee e 87
1010 S (L= TSR 88
0 S 88

INAEX Of PrIMITIVES.....c.eiceecee e et ae b e e e sre e reennenns 89

Hands on Parlog for Windows 1.0 1

1 Introducing Parlog for Windows

Parlog for Windows is an implementation of the Parlog programming language running
under Windows 3.1 (or later). It is completely faithful to the standard Parlog syntax and
semantics used in Tom Conlon’s book Programming in PARLOG. Every program from that
book should run unchanged under Parlog for Windows; in fact, source code for the book’s
final chapter "case study” programsisincluded on the Parlog for Windows distribution disk.

1.1 Scope of this Guide

This Guide is both an introduction to the Parlog for Windows system and a reference manual
for the language. 1If you know Parlog then this document should be all you need to get you
programming in the language under Windows. If you are new to Parlog then you should use
this Guide in conjunction with one of the books recommended below.

The Guide has two parts. The first ten sections describe the Parlog for Windows system,
including how to get it running, how the system is structured, and in general how to develop
and run Parlog programs. These sections are tutorial in style and we suggest that you read
them through in sequence, trying the examples out in "hands-on" fashion as you go.
Following Section 9 comes more formal material which you will want to consult mainly on a
reference basis. These sections chiefly define the syntax and semantics of the language and
document the available primitives. The primitives are described in groups arranged by
function. Thereisan alphabetical index to them at the back of the Guide.

This Guide will not teach you how to program in Parlog. For this we advise that you read
either the tutorial book:

Programming in PARLOG
by Tom Conlon
Addison-Wesley 1989

or else the more advanced text:

Parallel Logic Programming in PARLOG:
The Language and its Implementation

by Steve Gregory

Addison-Wesley 1987

1.2 System overview

Parlog for Windows is a new member of PLP's family of Parlog systems. PC-Parlog, for the
MSDOS environment, and MacParlog, for the Macintosh™, were first released in 1989 —
the first concurrent logic programming systems to become commercially available on any
microcomputer.

Parlog for Windows has a wide range of implementation features:

» Parallel and sequential clause search operators.

2 Hands on Parlog for Windows 1.0

» Parallel and sequential conjunction operators.

» "Deep" guards with full or-parallelism.

» Control metacalls.

* Nearly 100 primitives, including all standard Parlog primitives.

* Lazy and incremental compilation.

» Advanced concurrent debugger with channel and process spying.
» High-level query facilities with "dynamic view" for query variables.
» Database interface.

» Stream keyboard input capability.

» Easy-to-use programming environment.

These features and others are explained in the rest of this Guide.

1.3 If you are upgrading

If you have owned the latest release version of Parlog for MSDOS (PC-Parlog 2.0) it may be
helpful to identify how this new system differs from that one.

As a 32-bit application, Parlog for Windows frees you from the memory limitations
associated with MSDOS applications such as PC-Parlog: there is effectively no limit on the
size of Parlog programs that can be run under Parlog for Windows. The other main
enhancement provided by Parlog for Windows is a more friendly programming environment,
making use of fully scrollable windows and menus.

There are a few new primitives, partly to exploit the new facilities provided by the
Windows environment. These awat/ 2, dial og/ 4, recall/2, remenber/ 2,
sane/ 2,title/1,toground/ 3,tohol | ow 3, andvarsi n/ 2.

Care has been taken to ensure upward compatibility between PC-Parlog and Parlog for
Windows. The DOS-specific primitivesdi t/ 0, edi t/ 1, andos/ 0 have been removed,
while key/ 0 and space/ 4 have been replaced lkey/ 1 andfree/ 6, respectively.

With those exceptions, Parlog programs developed under PC-Parlog should compile and run
without difficulty under Parlog for Windows.

1.4 Installing Parlog for Windows

The Parlog for Windows package comprises a single 3%-inch disk together with a manual
Hands on Parlog for Windows 1.0, which you're reading now. We recommend that you copy
the disk in the usual fashion: put the master away in a safe place and work only with the
copy. That way you have a backup against accidents. The Parlog for Windows disk is not
copy-protected — we trust you not to abuse our licensing agreement.

To use Parlog for Windows you need an IBM PC compatible machine running

Hands on Parlog for Windows 1.0 3

Windows 3.1, with at least 3Mb of available XM S memory.
To start, insert the Parlog for Windows diskette and copy all of its contents to a suitable
directory on your hard disk. The diskette contains the following files and directories:

 Five files which constitute the Parlog for Windows system: 'PARLOG.EXE',
'PARLOG.OVL', 'PARLOG.EXP', 'PARLOG.INI', " WINMEM32.DLL".

* A directory named 'EXAMPLES', containing Parlog code which you can study. Some of
these example programs will be used in what follows.

» A file named 'README'. This is a text file which has been created since this Guide was
printed. It will contain updated information about the system. Read it quickly now just
to see if there is anything really important: the details can wait until later.

1.5 Running Parlog for Windows

One way to get Parlog for Windows running is to use the Windows File Manager to select the
file 'PARLOG.EXE' and use thé&i'l e/ Run' menu option, or just double-click on the file.
Alternatively, you can create a program item for 'PARLOG.EXE', using the Program
Manager'sFi | e/ New option.

When Parlog for Windows starts, it will begin by displaying a graphical banner which
remains on the screen while the system is loaded. When loading is complete, the banner is
replaced by two text windows: theain window (namedParl og for W ndows')
enclosing theconsole window Consol e' (Figure 1.1). The console window contains a
textual banner, followed by the supervisor prompt.

E#e Edit Search Bano Windoes

arleg for Windows version 1.8 -- created 81 Jan 19895
opyright () 1988-95 Parallel Logic Programming Lid,
=63, Lo=63, Rs=64, Hp=124, Tx=121, Pg=12%1

+| »

¢

£l

Figure 1.1

The console window acts rather like a standard DOS window: commands and Parlog
gueries can be typed in at the supervisor prompt. Unlike a DOS window, you can scroll back
over text that has disappeared from view, cut and paste text, and reenter previous commands
with a single keystroke. The main window provides a set of menus for loading and saving
program files, selcting windows, searching, editing, and so on. The menu options, and the

4 Hands on Parlog for Windows 1.0

commands available, are described exhaustively in Section 12. First, in the next section, we
give atutorial introduction to the use of the system.

Hands on Parlog for Windows 1.0 5

2 Entering queries
2.1 A simplequery

Asasimple first problem for Parlog for Windows to solve, try entering a query containing a
few callstothei s/ 2 primitive. Type the following query into the console window:

Xis Y+2, Y is 3+4.

(Notethat it is essential to type the period, and then Ret ur n, at the end of the query.)
Parlog for Windows simply evaluates the query and reports its result, in this case
succeeded, asshownin Figure 2.1.

— | =

Fie Edit Search Fun Windos

| »

arleg for Windows version 1.8 == created 81 Jan 199%
opuright (o) 1989-95 Parallel Logic Frograsmming Ltd,
=63, Le=ed, Rszald, Hp=12h, Tx=121, Pg=12%1

<= K ois YR, ¥ s 3w,
SEcCeRded

c= K.Y R s VR, ¥ is 304,
¥=a

¥=T

succeaded

£=

=]

Figure2.1

Thisis not very interesting: we would probably be more interested in seeing the bindings
that are computed for the query’s variables. One way to do thisis by including calls to output
primitives within your query, for example:

Xis Y+2, Yis 3+4 & wite(answer(X Y)) & nl.

The call towrite/ 1 appearing in this query will display the term answer (9, 7) on the
screen. Thecall tonl / O will ensure that the result, succeeded, will be written to the start
of the next line. The primitivesw i te/ 1 and nl /0, along with many other primitives
which can be used for output, are described in Section 13.7.

Notice the mix of parallel with sequential conjunction operators in the above query:
Parlog for Windows follows the standard Parlog convention whereby the parallel operator
"binds more tightly" than the sequential operator, so that the callstowrite/ 1 andnl /0
cannot be made until the evaluation of the concurrent i s/ 2 callsis complete.

2.2 Displaying variable bindings

Parlog for Windows provides a simpler way to view the bindings of variables, without

6 Hands on Parlog for Windows 1.0

explicit output calls: just type the variable names at the beginning of the query, separated by
', "and followed by ’: ’, for example:

X, Y Xis Y+2, Y is 3+4.

The result of this query is shown in Figure 2.1.

If you want to see bindings for all variablesin aquery, it is not necessary to explicitly list
their names: you can type the word al | in place of the variable list. For example, the above
query is equivalent to:

all : Xis Y+2, Y is 3+4.

There are adternative, or additional, ways of displaying variable bindings which are useful for
more complex queries; these will be explained later.

2.3 Failureand errors

A query may not succeed like the one shown above. It may fail if the arguments of a call are
incorrect or if you call arelation that is not defined. An example of afailing query is:

2 is 3+4.

Another possible outcome of a query is a run-time error. If an error occurs at any time
during the evaluation of a query, the evaluation is aborted immediately and an error message
displayed: this includes a numeric error code, an explanatory message, and the call that is at
fault. For example, an attempt to divide by zero produces arun-time error:

Xis 1/0.

Run-time error messages are described fully in Section 11.3.
Figure 2.2 shows the effect of both of the above queries.

Farlog lor Windows

Fie Edit Search Fun Windos

| »

<= 2 is 3,
failed

error($2);
Gritheetic Ouerdlow at _G8OHWNTE is 1 / @

o= i Y2,
stopped

£=

=]

Figure 2.2

Hands on Parlog for Windows 1.0 7

2.4 Interrupting Parlog for Windows

When a Parlog evaluation cannot terminate because some process is left waiting for
something which will never happen, we have the state of affairs known as deadlock. It is
only too easy to illustrate how this state can be reached. Enter the query:

Xis Y+2.

and your computer will seem to go into a trance. Deadlock arises here because the i s/ 2
process suspends waiting for the expression Y+2 to become ground, which in this case means
waiting forever. When you tire of waiting, you can break the deadlock by hittingthe Ct r | -
br eak key. Thiswill cause the query to be aborted immediately and a st opped message
displayed, as shown in Figure 2.2.

Of course, deadlock isjust one of many reasons why a query may fail to terminate. There
are many kinds of program bug that could cause a query to run indefinitely without
producing useful results. In all such cases, you will need to usethe Ct r | - br eak key (or,
equivalently, the’Run/ Qui t * menu option) to regain control of your machine.

2.5 Correcting and recalling queries

If you make a mistake while entering a query, it can easily be corrected at any time before
you type Ret urn: just use the mouse or cursor keys to position the cursor, and the
Backspace or Del et e keysto delete characters. Arbitrary text, from the console window
or elsawhere, can be pasted in and edited while forming a query.

It iseven possible to recall the last (or any previous) query, avoiding the need to typeit in
again. Simply move the cursor to the appropriate line in the console window and type
Ret ur n: that line will then be copied to the bottom of the console window and executed
automatically. If desired, the line can even be edited before typing Ret ur n.

8 Hands on Parlog for Windows 1.0

3 Entering and running programs

Now it’s time to try entering and running a program. As an example we shall enter the
procedure for the i nt eger s/ 3 relation which is given in Chapter 4 of Programming in
PARLOG. Thisis provided on the distribution disk.

3.1 Entering the program

First, create a new program window by using the New. . . command from the Fi | e menu
(which we shall abbreviate as'Fi | e/ New. . . ’). A directory dialog box will appear, listing
(initially) all fileswith a’.PAR’ extension in the current directory. Use the dialog to enter the
name of afile that does not aready exist, say 'TEST.PAR': this file will be associated with
the new program window. If you select the name of an existing file, a warning message will
appear: if you choose to proceed, the existing file will be replaced.

After selecting a filename, a new empty window will appear on the screen with the same
name as the file. Now type the i nt eger s/ 3 procedure into the window, using the usual
Windows editing facilities to correct any mistakes.

In general, you can create any number of program windows, and your program can be
divided among them as you wish. The only restriction is that a given procedure must not be
split between windows.

3.2 Savingthe program

While developing a program, you will want to save it on disk at regular intervals. To do this,
simply select the 'Fi | e/ Save Al | * menu option. This will immediately save the contents
of your program window in its associated disk file. In general, this option saves all open
program windows that have been edited since they were last opened or saved, into their
respective disk files.

3.3 Loading theprogram

When you are satisfied with the contents of the 'TEST.PAR window, select the
'‘Run/ Load Al'l " menu option. This will check the syntax and structure of the source
program, and store it in memory in an internal form. In general, this option loads all program
windows that have been opened or edited since they were last loaded. The program windows
are automatically saved into their respective disk files before they are loaded.

If aprocedure already exists with the same relation name and arity as one being | oaded,
the new procedure will silently replace the old one, with no warning message.

If your program contains syntax errors, the loading will be aborted and an error message
will appear in the console window. If an error is found in the structure of the program, a
message will again be displayed in the console window but the loading will continue. (See
Section 11 for an explanation of error messages.) In either case, the 'Run/ Load Al |’
option will remain enabled: you should then correct the errors in the window and select
'‘Run/ Load Al | "again to load the program.

The internal form of a program preserves all aspects of the source program except its
layout and comments. If you want to view the program currently stored, type the command

Hands on Parlog for Windows 1.0 9

| i sti ng inthe consolewindow.

3.4 Runningthe program
Now to seeif it works. Enter a query into the console window, such as:
X : integers(1, 10, X).

The solution to the query should now appear on the screen, as shown in Figure3.1.
Congratulations — you have now successfully run your first Parlog for Windows program!

File Edit Search Bun sdow

= Consale [=]=
- X : integers{l 10_X).

X0 [1.2,3.85.6.7.8.9,10]
succeeded

mode integers(from?, te?, intlist B
integers(H 4, [H]) .
integers(H1 K2 [N1|Rest]) <- M1 < N2 -
Hext is H1 + 1,
integers|Mext N2 Rest) .

+ | [+

Figure 3.1

3.5 Lazy and incremental compilation

You will have noticed that the query is not run immediately: there is a slight delay while
Parlog for Windows compiles thent eger s/ 3 procedure to object code. While this is
happening, Parlog for Windows displays messages (in a status box) to tell you what relations
it is compiling.

Parlog for Windows's compilation is both lazy and incremental. The compilation is
incremental in that procedures are automatically compiled if they have just been defined, or
have been changed in any way; no time is wasted in recompiling previously compiled
procedures. Incremental compilation means that you do not have to worry about handling
object code; Parlog for Windows takes care of the compilation automatically.

Lazy compilation means that procedures that need compiling are not compiled until the
last minute. That is, procedures are compiled only when they are actually called, even if this
Is deep inside an evaluation. This facility can be very helpful in the development of a large
program: you can load the entire program and test parts of it; only procedures that are
actually used will be compiled.

Lazy compilation is useful but you are not forced to make use of it. Instead, you can
compile a progransagerly: just enter the query:

10 Handson Parlog for Windows 1.0

conpi |l e.

Thiswill force the immediate compilation of all procedures currently in memory except those
which have already been compiled.

3.6 Opening program files

The 'Fi | e/ Open. ..’ menu option is used to open Parlog programs stored in disk files.
Select the 'Fi | e/ Qpen. . . " menu option now. A directory dialog box will appear, listing
(initially) al files with a.PAR’ extension in the current directory. Now use the dialog to
enter the name of an existing file, such as one of the example programs supplied on the
distribution disk. The file will be read into a new program window with the same name as
the file. If you select the name of a non-existent file, an error message will appear in the
console window.

3.7 Closing program windows

A program window may be closed at any time in the usual way: by selecting the Cl ose
option of the window’s control menu. If awindow is closed in this way, it is first saved into
its associated disk file; the internal form of the window’s procedures will remain in memory.

The 'Fil e/ Cl ose All’ menu option saves all open program windows into their
respective disk files (there is no need to select 'Fi | e/ Cl ose Al |’ first), closes the
windows, and deletes the internal form currently stored in memory. Try this option, and then
typel i sti ng in the console window: this should confirm that no program is stored.

3.8 Direct loading and saving

It is possible to load a Parlog program directly from a disk file, bypassing program windows,
by using thel oad/ 1 primitive described in Section 13.9. For example:

| oad(i nt egers)

will load into memory the contents of the INTEGERS.PAR'’ file in the current directory (a
".PAR’ extension is automatically added if oneis not specified). Y ou may explicitly specify a
disk drive and/or directory, for example:

| oad(’ c:\ parl og\ exanpl es\integers’)

The | oad/ 1 primitive can be especially useful in conjunction with queries in programs
(see Section 9.2): one program file can automatically load others without user intervention.

Conversely, a program currently stored in internal form can be saved into a disk file by
thesave/ 1 or save/ 2 primitive described in Section 13.7.

Hands on Parlog for Windows 1.0 11

4 Program groups

It is usualy helpful to divide a Parlog program into many small windows (files) rather than
one large window. This helps to separate logically independent parts of the program.
Another advantage of this approach is that, when you edit the program, only the window
containing the change needs to be reloaded and recompiled: the smaller this window, the
faster this process will be.

It would be very tedious to have to open alarge number of program files individualy, by
the methods described in Section3. To overcome this problem, Parlog for Windows
provides the concept of program groups. related program files can be grouped together, so
that they can subsequently opened in asingle action.

4.1 Creating aprogram group

A program group can be created, or opened, only if there are no program windows currently
open. If there are open windows, close them by selecting the 'Fi | e/ Cl ose Al l " menu
option. Now the two menu options °File/New Goup...’” and
'Fi | e/ Open G oup. .. will beenabled.

Select 'Fi | e/ New G oup. .. now. A directory dialog box will appear, listing all files
with a’.GRP extension in the current directory. Use the dialog to enter the name of a file
that does not already exist, say TEST.GRP. If you select the name of an existing file, a
warning message will appear: if you choose to proceed, the existing file will be replaced.

After selecting a filename, nothing will seem to happen except that the group filename
will be added to the title of the main window. However, every program file that is
subsequently created or opened will become part of the named group; program windows that
are closed (using their control menu) will be removed from the group.

Try opening several program files now: for example, the programs 'INTEGERS.PAR,,
'VARS.PAR’, and 'SQUARES.PAR’ supplied on the distribution disk. These program files
have now become part of the TEST.GRP group. The result should appear asin Figure 4.1.

Eile Edit Search Bun Misdow
- Consale |"|‘l

e INTEGERS.PAR I=1=1
* VARS.PAR

Ll=]"

-
o PARLOG exanple: Squares.

no
i)
i)

From "Hande on Parlog for Hindows™ .
o

mode squares AURS?, squares”] .

squares] [NumlNums] . [Square) Squares]) <=
Square i Num = Num,
squares{Nums . Squares)

squares([].[1)

] IS

Figure 4.1

12 Hands on Parlog for Windows 1.0

4.2 Savinga program group

When a group is open (indicated by the group name in the main window title), it will be
saved by the commands that are used to save program windows. If you select
'Filel Save All’ (or 'File/d ose Al’ or 'Run/ Load Al I’, which automatically
save al windows), the group file ' TEST.GRP is updated with the names of all currently open
program windows. Selecting 'Fil e/ Cl ose Al |’ will close the group, as well as all
program windows, removing the group name from the title of the main window. After
closing the group, you can open program windows that are not part of a group, create a new
group, or open an existing group.

4.3 Opening a program group

The 'Fi | e/ Open Group. ..’ menu option is used to open a program group previously
stored in adisk file. Select the 'Fi | e/ Open Group. .. menu option now. A directory
dialog box will appear, listing all files with a’.GRP’ extension in the current directory. Now
use the dialog to enter the name of an existing group file, such asthe 'TEST.GRP file used as
our example. The group filename will be added to the main window title, and all of the
program filesin the group will appear in program windows on the screen.

Hands on Parlog for Windows 1.0 13

5 Dynamic display of query variables

An integers/ 3 process is a typica Parlog process in that it is incremental in its
production of data. The variable X in the query:

X : integers(1,10,X).
actually receivesits value as a succession of bindings:

X [1] X1]
[1, 2] X2]
[1,2, 3] X3]

[1,2,3,4,5,6,7,8,9,10]

in the course of the query evaluation. The list datais computed as a"stream” of integers. this
incremental behaviour is essentia to Parlog’s usefulness as a concurrent language. It means
that potentially some other process could be running concurrently with the i nt egers/ 3
process, and this other process could be doing productive work with the individual integers as
they arrive on the stream.

However, the incremental behaviour is not visible from a query like the one above,
because the .’ operator in the query asks Parlog for Windows to display the bindings
computed for its variables only after the query evaluation has terminated.

The standard way to animate the display of stream datais to define a " suspendable write"
procedure, suchasswrite |i st/ 1, describedin Chapter 5 of Programming in PARLOG.
Try this now: create a new program window and typeinthesw i te | i st/ 1 procedure:

node swite list(list?).

swite_ list([HT]) <-
data(H &
wite(H &
swite_list(T).

swite_list([]).

Now with aquery such as:
i ntegers(1,10,X), swite list(X).

you can watch a dynamic display on the screen. The integers will be written by the
swrite |ist/1processconcurrently with their generation by thei nt eger s/ 3 process.

This approach works, but Parlog for Windows offers something more convenient. The
capability to display dynamically bindings made to query variables is built into the query
system. There are three "view formats" for this dynamic display:

* |ncremental view.
* Film view.

* Snapshot view.

As we shall see next, these facilities are powerful and they make it largely unnecessary to
define anything likeswri te_I| i st/ 1 for yourself.

14 Hands on Parlog for Windows 1.0

5.1 Incremental view

To try the first of the dynamic display formats, incremental format, enter the query:
X :: integers(1,10,X).

That is, type the variable(s) that you want displayed, followed by the : : ’ operator (two
colons), followed by the query conjunction. Parlog for Windows will now automatically
display the data produced for X incrementaly as it is generated by the i nt egers/ 3
process. It will output this data into a specially created "view window" which is named X
after the variable itself:

= vl‘

[1.2.3,4,5,6,7,8,9,10] 4

+

When the query has terminated, whether successfully or not, the view window will continue
to be displayed so that you can examine the contents of the view window(s) at your leisure.

In general, the incremental view option generates one display window for each variable
listed beforethe”: : " in your query. Asamore interesting example, define another procedure
which can compute the squares of a given list of numbers:

node squares(nuns?, squares”).

squar es([Nun Nuns], [Squar e| Squar es]) <-
Square i s NuntNum
squar es(Nuns, Squares) .

squares([],[])-

You don't have to enter it from scratch. If you fedl lazy, load it from the 'SQUARES.PAR’
file in the 'EXAMPLES directory on the Parlog for Windows distribution disk. Now enter
the query:

all :: integers(1,10,X), squares(X, XSquares).

(As we saw in Section 2.2, the word al | is shorthand for the list of al variables in the
query.) You should soon see something like Figure5.1: the list X generated by the
i nt eger s/ 3 process and the list XSquar es generated by the squar es/ 2 process are
displayed incrementally in separate windows.

5.2 Film view
Now to try the second of the dynamic display formats, filmformat. Enter the query:

X 111 integers(1,10,X).

Thisisthe same as our previous query except that the operator ”: : : ’ (three colons) isused in

placeof " : .

Hands on Parlog for Windows 1.0 15

File Ed&t Search Bun SWdow
[E
[1.2.3.%.5.6,7.8.9.10]

- &ll :: inbegers(1.10.X]. squares(X. NSquares).
succoeded

[=] +

E]

& =
=]l

EII =

Figure5.1

At a certain point in mid-evaluation you should see something like this:

[1.2.3.4,5,6,7]_D0054377] o+
+

The film format of display creates a view window for each displayed variable, as with the
incremental format. The difference is that, with a film display, the entire binding for the
variable is always shown, whether or not this binding contains free variables. A free variable
Is indicated by a symbol such as _00054377, representing an internal address. A film
window is continuously updated throughout the evaluation so that the progressive nature of
the binding is made visible. The effect can be thought of as akind of "filming" of the term as
it gradually acquiresits ultimate value.

Thisform of dynamic output is more suited to displaying some kinds of term, particularly
those containing variables which will never become instantiated. As an extreme example, try
a query involving a call to the following var i abl es/ 3 procedure (aternatively, load the
procedure from the file 'VARS.PAR’ on the distribution disk):

node vari abl es(fronf, to?,varlist”).
variables(N, N, [V]).
variabl es(NL, N2, [V|Rest]) <- N1 < N2 :
Next is N1 + 1,
vari abl es(Next, N2, Rest).

The call vari abl es(1, 10, X) has a solution for X which is a list of ten unbound
variables. If we ask for this to be output incrementally, for example:

X :: variables(1, 10, X).

the X window will never display more than the opening bracket ’[* of the list to which X'is
bound. This is because the incremental output facility can only write ground terms and

16 Handson Parlog for Windows 1.0

would suspend, waiting in vain for the first variable in the list to be instantiated; it will finally
giveup whenthevari abl es/ 3 process terminates.
Now try the film format instead:

X ::: variables(1,10,X).

This will produce a more interesting display: the X window might look like the following at
some point during the query evaluation:

[_00049B2A, _0OO4BOTE,_0O04CI42, _OOO4ERTE,|[4)
_00OY4FSCC|_O004FISF]

+

and will display the entire list of ten variables by the time that the query terminates.

5.3 Snapshot view

The snapshot format is really just an economical version of the film format. No matter how
many variables are contained in the query only one window is created, which is named
vari abl es. Into this window are written al the required variables using the continuously
updated "film" style, one variable per line. The vari abl es window is wider than the
default width of incremental and film output windows, and can be scrolled horizontally.

Assuming that you still have the i nt egers/ 3 and squar es/ 2 definitions intact
(otherwise, you can load them from files INTEGERS.PAR’ and 'SQUARES.PAR), try it out
with aquery usingthe’: : : : ’ operator (four colons!) such as:

all :::: integers(1, 10, X), squares(X, X2), squar es(X2, X4).

At one point in mid-evaluation the display looks like this:

= variables v| -
X=[1,2,3,4,5,6,7|_0003BSDF] t
X2 = [1,4,9,16,25,36,49| _0003BEOD]

x4 = [1,16,81,256,625,1296,2401|_OOO3BE49] +
« | +

Use the snapshot format whenever you want to save screen space and do not mind that
only part of the terms might be visible. Another advantage of snapshot format is that the
vari abl es window is positioned near the bottom of the screen and the upper part of the
screen is left clear for other purposes. Other windows created dynamically — either for
dynamic display or for tracing — will not overlap th@ri abl es window unless this is
unavoidable.

5.4 Combining dynamic display formats

The four forms of variable output are not mutually exclusive. You may specify any
combination of them, in the general form:

Hands on Parlog for Windows 1.0 17

Terminal : Incremental :: Film ::: Snapshot :::: Conjunction.

where each of Terminal, Incremental, Film, and Shapshot is a list of variable names, or the
word al | . Note that the order isimportant.

The only restriction is that, if the same variable appears in both the Incremental list and
the Filmlist, only incremental output is provided for that variable.
Examples of valid queriesinclude:

X : X :: integers(1,20,X).
X :: Y ::: integers(1,20,X), variables(1,20,Y).
P:: P:::: primes(P).

5.5 Pragmatics of dynamic display

How does the dynamic display feature work? Essentially, your query is pre-processed by the
addition of concurrent calls to specia system-defined procedures which perform the output.
The query supervisor ensures that the system-generated calls terminate as soon as your own
callsterminate, so they will never cause deadlock.

The special procedure used for the incremental view format is actually available to your
own programs. Thisistherelationi ncwri t e/ 2 which isa Parlog for Windows primitive,
documented in Section 13.7. Its definition is quite similar to swite |i st/ 1 as shown
above, but it is more complex because it has to be able to handle any type of term (not just
flat lists).

Terms written with i ncwri te/ 2 are displayed in the same format as used by the
di spl ay primitive. That is, atoms and functors are quoted if necessary but operator
declarations are ignored. However, in the case of terms which are written by the film and
snapshot procedures, current operator declarations are observed, so the format used is the
sameasthewr i t eq primitive.

A disadvantage of the dynamic display facility is that a query which makes use of it will
incur an overhead of extra execution time and storage space, because of the evaluation of the
extra output calls. Also, you should not try to infer too much about the behaviour of your
processes when the incremental output feature is used. For example, it is possible to be
misled by the time-lag which inevitably exists between the production of data by a call and
the appearance of that data in an incremental view window.

18 Handson Parlog for Windows 1.0

6 Debugging tools

An important aspect of programming in any language is concerned with analysing program
behaviour and, in particular, identifying and fixing bugs. Parlog for Windows provides a
powerful set of debugging tools to help you with these tasks.

6.1 Process monitoring and channel monitoring

The evaluation of a typical Parlog program can be understood as a process network: the
network comprises nodes representing individual computations or processes connected by
arcs representing the shared variables or channels. For example, the query:

I ntegers(1, 10, X), squares(X, XSquar es) .

creates the simple process network shown in Figure 6.1.

@ : @ =3

Figure 6.1

1

10

Here, there are two processes named i nt eger s and squar es and the two are connected
by a single communication channel named X. The processes each reduce, recursively in this
example, to other processes. The communication channel carries the stream of data
representing thelist[1, 2, 3, ..., 10] from thefirst process to the second.

The fact that programs can be understood in terms of processes and channels leads to two
complementary approaches to studying program execution. A process monitoring approach
observes the behaviour of processes, especially the reduction of processes to sub-processes.

A channel monitoring approach observes the flow of data along the channels which connect
processes. Our debugging might be either channel-oriented or process-oriented, depending
on the kind of information which we want.

Parlog for Windows provides support for both approaches. Process monitoring is
provided by the ability to perform query tracing and, more generally, by the ability to set
process spypoints on selected relations. Channel monitoring is supported by the facility to
display query variables dynamically, as described in Section 5, and more generaly by the
ability to set channel spypoints on selected program variables. Figure 6.2 illustrates this for
the query mentioned above. We could set a process spypoint on the i nt egers/ 3 or
squar es/ 2 relations — this would be process monitoring. Alternatively, or additionally,
we may decide to view dynamically the query varialdesr XSquar es — this would be
channel monitoring.

In the following sections we illustrate Parlog for Windows's debugging tools with the
Primes Sieve example which is in the file 'PRIMES.PAR' in the 'EXAMPLES' directory on
the Parlog for Windows distribution disk.

Hands on Parlog for Windows 1.0 19

Process monitoring:
spy these relations

@ X @ =

Channel monitoring:
spy these variables

10

Figure 6.2

6.2 Runningthe Primes Sieve example

Begin by resetting Parlog for Windows to scratch state. The easiest way to do this is by
using the 'Fi | e/ C ose Al | " menu option. Now use the 'Fi | e/ Qpen. . .’ menu option
to read in the file’ EXAMPLES\PRIMES.PAR’. The program contains a classic definition for
arelation pri mes/ 1:

node primes(”).
primes(Prinmes) <-
I ntegers_from(2,Ints),
sift(lnts,Prines).

This procedure, together with its subsidiary procedures, specifies a parallel version of the
well-known Sieve of Eratosthenes algorithm for generating prime numbers.
First, check that the program does actually work. Try aquery like this one:

P:: primes(P).

After compiling the program, Parlog for Windows will begin to display a list of prime
numbers in an incremental view window named P.

Notice how helpful is the dynamic display feature here. The solution to the query is an
infinite list of prime numbers, so had we used the "terminal" display of variable bindings
(using the : ’ operator) the wait would have been along one! Of course, since the evaluation
is non-terminating you will have to interrupt Parlog for Windows from the keyboard in order
to regain control of the system. The easiest way to do this is by selecting the 'Run/ Qui t”’
menu option; the view window for P will remain visible after the interruption.

6.3 Query tracing

A form of process monitoring which is very often useful is query tracing. To trace the

20 Handson Parlog for Windows 1.0

Primes Sieve program, just enter the query:
trace.

to switch on trace mode, and then run the pri mes query as before. The tracer will now
supervise the evaluation of the query. After creating aview window for P (assuming that you
have again requested incremental output for P), a trace window will be opened, displaying a
cal | event. Immediately below this trace window is a trace dialog with five buttons,
labelled ent er , ski p,unl eash,fil mandquit. Thisisshownin Figure 6.3.

=-| Paarlog for Windows bt Il
Eite Edit Search Famo Wincowr
=| P - == 1 >

#fcall primes(S883E418)

+

| e

(= frace,
succesded enter | giop |umessh | mn quit

<= B i primes(F).

£l

]

Figure 6.3

The Parlog for Windows tracer normally creates a window for each process and it names
them O, 1, 2, _inturn. Herethe trace window is named 1 (not O, because there is one view
window present). The message cal | prinmes(_0003E419) in the trace window is
reporting the first event in the execution of the query: a call has been madeto the pri mes/ 1
procedure. Notice that the tracer refers not to a variable’'s source name but to its interna
address.

Each trace dialog is positioned next to the trace window to which it refers; its title is
Trace N, where N is the name of the corresponding trace window. Trace dialogs are
modeless: while they are on display you can not only move them around the screen but also
select other windows (such as trace windows), move them, resize them, and examine their
contents. As an dternative to moving trace windows, you may prefer to use the
wi ndows/ 5 primitive to globally change their positions and/or sizes; see Section 13.11.
When you are ready to continue with the computation, you must click on one of the buttons
on the trace dialog.

From the definition of the pri mes/ 1 procedure, we can see that a pri nes/ 1 process
reduces to two sub-processes: ani nt egers_froni 2 processandasi ft/ 2 process.

Select ent er from the trace dialog. This will cause Parlog for Windows to report that

" Unfortunately, in the current version of Parlog for Windows, the trace dialog will disappear behind the
main Parlog window if you click on any other window while it is on display. To retrieve the dialog:
minimize the main Parlog window, drag the trace dialog to a clear part of the screen, e.g., the bottom, and then
restore the Parlog window.

Hands on Parlog for Windows 1.0 21

the pri mes/ 1 process has reduced. (At this point, you might notice that the pri nes/ 1
procedure is automatically recompiled. The recompilation is necessary because the tracer
requires a special form of object code; thisis described in detail later.)

A second trace window will now be opened and anew dialog will appear below it to offer
you the same set of options for tracing the i nt egers_from 2 process, as shown in
Figure6.4. The number 1 in the messager educe-1 pri nmes(_0003E419) shows that
the pri mes/ 1 call committed to the first clause of the procedure (unsurprisingly in this
case, since thereisonly one clauseinthe pri mes/ 1 procedure).

=-| Farlog for Windoes bl Il
P Edit Search Fun Windowe
=| P =|all= i -
#[icall primes(_8683£419)

81 primes|_8083£419)

I EY)

-+
=) 3 Tis

icall integers_from(2, _8883a872)

=]

]

Figure 6.4

Select ent er to tracethei nt egers_from 2 process. The tracer will now report a
new event in window 1, namely the call to si ft/ 2; see Figure6.5. This illustrates the
concurrent execution: the traces of the sift/2 and i nt egers_from 2 sub-processes
chronologically interleave. Perhaps you expected the si f t / 2 process to be traced in a new
window. We promised earlier that the Parlog for Windows tracer normally creates a new

=-| Paarlog for Windows bt Il
Eite Edit Search Famo Wincowr

=.|] ..;.=.| q =

tfcall priwes| _BeE3EY19) +
o1 primes(_S983E419)
all sift(_9983naty, _Beeisy1a)]
0 5]
=| 2 DE = [
i f
call integers_from(2, _8803a972) + aldp densh | [m quit
1+
4]
| [o
Ll]

Figure 6.5

22 Hands on Parlog for Windows 1.0

window for each process, but to do so without exception would risk an explosion of window
numbers. One of the exceptions is the process evaluating the last (textual) call in the body of
aclause. This process is traced in the window of its parent. Such a "sharing”" of windows
may seem an insignificant economy in the case of pri mes/ 1 but with recursive processes it
can make a big difference.

You are now tracing the two concurrent processes to which the pri nmes/ 1 process has
become reduced: a si ft/2 process running in window 1 and an i ntegers_froni 2
process running in window 2. The cal | messages in the trace windows show that the
variable _0003A972 is shared between these processes. It implements a channel which will
carry integersfromthei nt egers_from 2 processinto thesi ft/ 2 process. (In genera,
the address of a variable can change during execution so that the same variable could be
referenced by different addresses in trace messages displayed at different times. This means
that the variable names displayed by the tracer are not necessarily a reliable guide to shared
variables.)

If you now select ent er you will see that thei nt egers_from 2 process will itself
spawn two sub-processes: an i s/ 2 process and a recursive i nt egers_from 2 process.
A further trace window will be opened for the first of these, while the second will share the
parent call’s trace window, as Figure 6.6 shows.

=-| Paarlog for Windows bt Il
F#e Edit Search Ban Window
=.| P .| =.| 1 -
+[icall primes(_88a3£419)
o1 primes(_S983E419)
all sifti(_B9ea3nats, _oea3gy1s)

-

= 2z |- =.|] -
call integers_from(2, _8003a972) #[icall _eooyisFe is 2 ¢ 1
reduce-1 integers_from(2, _99834972)

el 1] o fe] [1] »

e ELC s Ton uit

£l

]

Figure 6.6

Select ent er to trace thei s/ 2 call. The i s/ 2 process will quickly succeed and
terminate. Whenever a process terminates, the window in which it is traced will be deleted,
but only after you have been given a chance to examine the window’s contents. A "close
diadog", named 'Cl ose 3’, now appears below window 3 (see Figure 6.7). When you select
cl ose, window 3 will be deleted.

Calls to primitives such asi s/ 2 are traced in the same way as other relations, with the
exceptions of dat a/ 1 and gr ound/ 1, which are invisible to the tracer. Of course, no trace
events occur during the execution of a primitive call: after ent er ing one, the next event
reported will besucceed orf ai | .

Follow the evaluation through for some way until you feel comfortable with the tracer. If
you carry on asfar asacall tofil ter/ 3 you will see that the tracer does not create new
windows to trace guard calls: to restrain the proliferation of windows, these calls are traced
directly in the window of the parent process. Another such economy, not illustrated here,

Hands on Parlog for Windows 1.0 23

affects sequential conjunctions: two callsA & B will be traced in the same window.

=-| Farlog for Windoes bl Il
Fie Edit Search Fum Windows
=| P === i - |-
#[icall primes(_8683£419) +
81 primes|_8083£419)
all sifti_9ea3aote, _Bea3Eyia)]
+ +
=.| 2 -|= =.| E] |
icall integers_from(2, _8883a872) +[call _S8843GFR is 2 + 1 +
reduce=] integers_from(2, _8883a872) wcoeed 3 is 2 4 1
3 L+
choae fuit
1
+ []
L1 I
Figure 6.7

Selecting ent er in response to each trace dialogue enables you to "single step” through
the execution. Alternatively, you could choose unl eash to trace the call exhaustively
without further dialogue, or ski p to execute the call with no tracing. These options are
described in more detail below.

To stop a hon-terminating process, such as the present pri mes example, select qui t in
response to any trace dialog or close dialog, select the 'Run/ Qui t ' menu option, or type
Ctrl - br eak from the keyboard.

6.4 Filming acall

Notwithstanding the tracer’s efforts to economize on the growth of windows, it can easily
happen during tracing that the number of windows becomes uncomfortably large. One way
to keep the numbers down isto select ski p in response to the trace dialogue to avoid tracing
uninteresting calls. These calls will not then be traced, other than to report their eventual
outcome. But this approach might be too extreme: for example, if we skipped either of the
two sub-processes spawned by pri nes/ 1 then it would be difficult to discover what data
the processes generated, since they never terminate. Actually, even when a call is traced it
can be far from easy to identify the data it produces because of the way in which streams are
typically generated incrementally as processes reduce.

The tracer’s call filming capability can help with both of these problems. To illustrate,
run the pri mes/ 1 program once again with tracing switched on. From the trace dialogue
choose ent er to trace the pri nes/ 1 cal as before. But this time, when you are offered
the trace dialogue for the i nt egers_from 2 call, select fil m This will produce a
window named i ntegers_fronf 2 in which the i ntegers _fronf 2 cal will be
"filmed": repeatedly during the evaluation the state of the call will be written into the
window, just as with the "film view" option for dynamically displaying a query variable.

Notice that the trace dialogue remains on display after selecting fi | m This is because
the decision to film a call does not affect your freedom to choose whether to ent er,
unl eash, or ski p the call. In this case we shall choose ski p. Make the same choices

24 Hands on Parlog for Windows 1.0

= =
Foe Edit Search Bun Windower

= -|= =.| 1 -
23,571 t[call priwes| BEBYEIFF)

o1 primes| _SSSUB1FF)
all sifti(_DEBUYESY, _BeBUB1FF)

+

3 4]
=] 7 a2 B ntegers_fromiz =
call integers_from(2, _B0allEsy) t|lintegers_from(2 [2,3.4.5,6,.7.8,9,10.11 .12+

13| _ees3e50])

+ 1+
=.| siftf? |
SIFE([2,3. 4.5, 6,7.8,9,18,11 12| _88aya21F] +
L2035, 71| _esenFs])

L+

£l

]

Figure 6.8

when the tracer offersyouthesi ft/ 2 call: select f i | mand awindow named si ft/ 2 will
be created for the call, and then select ski p and the filming of the call will proceed.

You can now sit back and watch the calls being filmed in their respective windows. At
one point in mid-evaluation the windows will appear asin Figure 6.8.

Although this kind of display tells us little about the "glass-box" internal behaviour of a
process it does make visible the "black-box" external behaviour, in which the process
receives data on some arguments and generates data on others. In effect, call filming gives
access to channel spying from within the tracer; channel spying is explained in Section 6.8.

Of course, having opted to skip the tracing of each of the sub-processes we can expect no
further intervention from the trace dialog. This means that the only way to interrupt the
evaluationisto type Ct r | - br eak or select the 'Run/ Qui t ' menu option. More typically,
the process evaluating a filmed call will terminate eventually, and when that happens the
Parlog for Windows tracer announces the event with a dialogue which enables the film
window to be closed.

When you no longer want tracing to be done, switch off trace mode by typing the query:

notr ace.

6.5 Process spying

In query tracing we have the ability to follow through the entire evaluation of the top-level
guery process or processes. If our interest is more localized, in the sense that attention can be
confined to some specific sub-processes, then the more selective form of tracing known as
spypoint tracing may be more convenient. By setting a spypoint on some relation we can
ensure that the tracer is invoked only when that relation is actualy caled. We are able to
"spy" the process in which we are interested and ignore the rest.

To set a spypoint on a specified relation you need only enter a query such as.

spy Relation/Arity.

An dternativeformiis;

Hands on Parlog for Windows 1.0 25

spy Relation.

which sets a spypoint on al relations with the specified name, regardless of their arity. Try
thisfor thei nt eger s_front 2 relation in the Primes Sieve example:

spy integers_from

We shall refer to this kind of spypoint as a process spypoint. This is to distinguish it from
the other form of spypoint, the channel spypoint, which we shall come to shortly. (Note that
it is not possible to set a process spypoint on a primitive relation.)

Now run the pri nes query again, making sure to switch off trace mode (using
not race) if it is still switched on. In the absence of query tracing you will not now be
offered the opportunity to trace the pri mes/ 1 process. The trace dialog will appear only
when a call is made to the i nt eger s_from 2 relation, because of the spypoint on this
relation. You can respond to the dialogs with any of the optionsfi | m ent er, unl eash,
ski p, or qui t, asusua. If you select ski p, the evaluation will continue without tracing,
but the tracer will be invoked again in a new window the next time that
I ntegers_from 2iscaled. Of coursetherewill be agreat many of these calls since the
relation is recursive. Eventually you will want to abort the execution by selecting qui t
from atrace dialog, by selecting the ’'Run/ Qui t " menu option, or by typing Ct r | - br eak.

6.6 Selective process spying

It is possible to set more selective spypoints which offer to trace only calls that match a
certain pattern, rather than all callsto arelation. To set a conditional process spypoint on the
i nt egers_from 2 reation, first remove the existing spypoint by a query like:

nospyal | .
Now add the new conditional spypoint:
spy integers from(17,).

When you run the pri mes query again, only the call to i nt egers_from 2 whose
first argument is 17 will be traced; no other calls unify with the specified pattern and so these
calls will not invoke the tracer. Parlog for Windows uses a unification test to determine
which calls should be traced so, for example, a call to i nt egers_from 2 whose first
argument is an unbound variable at the time of the call would also be traced.

Note that conditional process spypoints are additive: if there is more than one, the tracer
will be invoked when a call is made which unifies with any one of the patterns. Of course, a
general process spypoint set on a relation subsumes any conditional ones for the same
relation; there is no point in having both kinds in force at the same time.

6.7 Clearing process spypoints
When you've finished spying the i nt egers_from 2 process you have a choice about

what to do next. If what you wanted was only temporarily to cease spying then the best
option might be to switch off debug mode, by the query:

26 Handson Parlog for Windows 1.0

nodebug.

That way, the spypoint would remain intact but it would have no effect until debug mode is
switched on again, by the query:

debug.

Here though, let’s suppose that the spypoint isto be finally discarded. It's the only one set, so
there's nothing to be lost by removing all spypoints. Enter the query:

nospyal | .

Had severa spypoints been in force, thenospy/ 1 primitive would probably have been more
appropriate since it allows the removal of individual spypoints. There are three forms of
nospy/ 1:

nospy Relation/ Arity.
removes all spypoints (both general and pattern spypoints) from the specified relation, while:
nospy Relation.

removes them for all relations with the specified name, regardiess of arity. Finaly,
conditional process spypoints can be removed individualy. For example, the spypoint on
callsunifyingwithi nt egers_fronm(17, _) canberemoved by:

nospy integers from(17,).

Note that al spypoints on a relation are permanently removed when it is deleted (using
kKill/lorreinitialize/O,orbythe’File/C ose A I’ menu option); they will
not be reinstated if the relation is subsequently redefined.

6.8 Channel spying

As explained earlier, channel monitoring differs from process monitoring in focusing on
variables rather than relations. You have aready used one form of channel monitoring: in
Section5 we saw how the " :’, = ::’, and " :::’ operators in the query let you "spy"
dynamically the bindings for any query variables.

The kind of channel spying which is offered in the query is special, in that a channel
being spied is one which connects top-level processes. However, Parlog for Windows does
not restrict the channel spying capability to the top level: you are allowed to set a channel
spypoint on any program variable, in any procedure. At run time the system will
automatically display the bindings which are made for such a spied variable in a specially
created output window. The display format can be any one of the incremental, film, or
snapshot formats described previously and options are available for specializing the
circumstances in which channel spying will be invoked.

Channel spying and process spying can be freely mixed. It is even possible to have both
kinds of spypoint set for the same procedure at the same time. However, it will simplify
matters here if we assume that all process tracing is inactive, that is, that trace mode has been
switched off (by notrace/ 0) and all process spypoints have been cleared (e.g., by

Hands on Parlog for Windows 1.0 27

nospyal | / 0). Itwill also be useful, though not essential, to enter the query:
f ast code.

at this point, to make sure that the regular form of object code is generated, instead of the
slower traceable form. Regular and traceable code is explained in Section 6.12.3.

The Primes Sieve program can be pressed into service once again, this time to illustrate
channel spying. Asnoted earlier, apri mes/ 1 process reduces to two sub-processes which
share the variable | nt s. This variable acts as a communication channel which carries a
stream of integers from the i nt egers_fronf 2 to the si ft/ 2 process. By setting a
channel spypoint on the | nts variable we will be able to inspect this flow of data
dynamically asit is produced; see Figure 6.9.

Spy this channel

Figure 6.9
To set the channel spypoint, just enter the "query":
Ints :: prines/1-1.

This is an example of a channel spy query. Although it has a syntax similar to that of a
query, it is actually arequest to set a channel spypoint.
Now, as before, run the query:

P:: primes(P).

thus selecting incremental output for variable P in the query. You will see two windows
created, in which will be displayed, dynamically and incrementally, the bindings made for P
inthe query and for | nt s inthe pri nes/ 1 clause. (At the same time, you may notice that
the pri mes/ 1 procedure is automatically recompiled. Thisis necessary because a channel
spypoint has been set on a variable in this procedure.) At one point in the evaluation, which
will continue until it isinterrupted, these windows will appear as shown in Figure 6.10.

This display provides a dynamic view of the generation of the integers and of the prime
numbers which are sifted from the integers one after another.

Notice that the name of the channel spypoint window is I nts primes/1-1. This
identifies the window contents as representing the binding of the | nt s variable in the first
clause of thepr i mes/ 1 procedure.

More generaly, a spypoint set on a variable Var appearing in clause C of some relation
R/A has the following effect. On every occasion on which a cal to R/A is made which
commits to clause C, a window named Var R/ A- C is created, into which is written the
binding for Var . As soon as the clause body calls terminate — which might never happen,

28 Handson Parlog for Windows 1.0

Parlag lor windows

E#e Edit Search Bano Windoes

= [=|all=

+| »

12,3,5,7,11,13,17,18,23 #]12.3.4,%,6,7,8,8,18,11,12,13,14, 15,1617,
18,19,28,21 22,23, 24, 29

£]

+

<= Ints :: primes/1-1,
succeeded

<= B i primes(F).

£l

]

Figure 6.10

as in the case of the Primes Sieve example — a window appears which announces the event.

The channel spypoint window can display terms in film or snapshot format as well as in
incremental format. To do this, simply use the:" operator (for film format) or. " : : ' (for
snapshot format) in place of the " operator, in the channel spy query. It is also possible to
select different formats for different variables, even in the same clause. For example, if you
enter the channel spy query:

Primes :: Ints ::: prinmes/1-1.

the existing channel spypoint in the first clausegor mes/ 1 will be replaced by two new
ones: on the clause variablsi mes andl nt s. Now you will see the dynamic generation
of integers displayed in film format, while the list of primes is displayed incrementally.

If snapshot format is specified for one or more variables iiCthelause of relatioRV/A,
these variables will be displayed together in a window nanaed abl es R/ A- C.

6.9 Call contexts and selective channel spying

In the example above it was safe to assume that only one "copy" of the clause Vatiable
could ever exist, since there were no calls madprtorres/ 1 other than the top-level
(query) call. More generally, however, a clause variable could exist simultaneously in
severalkontexts: one for each call which commits to the clause containing the spied variable.
Below we illustrate how channel spying works in multiple contexts, and demonstrate the use
of explicit conditions which allow you to select the context(s) in which channel spying
should take place.

6.9.1 " First-context" channel spying

An easy, if somewhat contrived, way to illustrate channel spying with more than one context
Is with the query:

primes(P), prinmes(Q.

Hands on Parlog for Windows 1.0 29

which creates two concurrent pri mes/ 1 processes. If you run this query after setting a
channel spypoint on the variable | nt s then Parlog for Windows will create two spypoint
windows:. one for each of the two contexts in which the variable | nt s exists. The windows
will benamed I nts prinmes/1-1andIints primnmes/1-1:1,respectively. Of course,
each window will display the same data.

In general, for a channel spypoint set on a variable V in the Cth clause of arelation R/A,
the windows corresponding to successive contexts will be named:

V RA-C
VRACI1
VRAC?2

and so on.

A channel spypoint could easily create many such windows where, for example, the spied
variable occurs in a recursive clause. This can easily be avoided by setting a first-context
channel spypoint instead of the default all contexts spypoint. To set a first context channel
spypoint, simply add the words 'when fi r st ’to the channel spy query, for example:

Ints :: prinmes/1-1 when first.
Now, if you rerun the query:
primes(P), prinmes(Q.

you will see just one spypoint window created for variable | nt s, which will correspond to
the first context in which | nt s exists, i.e, thefirst call to pri mes/ 1 which commits to the
procedure’s first clause.

In generd, if the words 'when fi rst’ are added to any channel spy query for clause
R/A-C, the channel spypoint will take effect only if there is currently no active channel
spypoint for that clause.

6.9.2 Selective channd spying

When setting a channel spypoint, we can be more selective by specifying some conditions
under which the spypoint will be observed. A conditional channel spypoint is set by a
channel spy query of the form:

Vars :: R/ A-C when Conditions.

where Condi t i ons isacondition, or aconjunction of conditions separated by commas.

By default, if the when is omitted, the condition ist r ue which means "always observe
the spypoint”. The first-context channel spypoint described in Section 6.9.1 is another
special case in which the only conditionisfi r st (meaning "observe the spypoint if thereis
no active spypoint for this clause").

Syntactically, each condition is either theword f i r st or aunification test such as:

Terml = TernP

Any variables included in a condition are taken as referring to variables in the appropriate
clause if the names agree; otherwise they are treated as distinct variables.
To illustrate using the Primes Sieve example, let us set a channel spypoint which will

30 Handson Parlog for Windows 1.0

show the stream of integers entering and exiting thefi | t er / 3 process when 5 is the term
being filtered. Thedefinitionof filter/ 3is:

node filter(prime?,list?, filtered_ list”).
filter(Filter_num [NumListl],[NumList2]) <-
O =\= Numnod Filter_num:
filter(Filter_numListl, List2).
filter(Filter_num[NumListl], List2) <-
O === Numnod Filter_num:
filter(Filter_numListl,List2).

We want to set spypoints on the variables Li st 1 and Li st2 in the first clause for
filter/ 3, specifying the appropriate selective conditions. We can do this by entering the
channel spy query:

Listl,List2 :: filter/3-1 when first,Filter_num= 5.
Now run the query:
primes(P).

as before. You will eventually see two windows created, in which will be displayed lists
representing the input and output channelsof fi | t er/ 3 when 5 isthe integer being filtered
out, as shown in Figure 6.11.

Notice how these spypoints are interpreted:

On thefirst occasion on which a call commitsto the first clause of thefil ter/ 3
procedure with Fi | t er _numhaving the value 5, create a window for the display of
Li st 1 and Li st 2 inincremental format.

You may like to convince yourself that the spypoints could have been set on the second
clause rather than the first, with only a slight difference in the resulting window output.

Parlag lor windows
Foe Edit Search Bun Windower
List1 Hilnard3-1 List? filter/3-1 = -

U1, 13,17,19,23, 2%, 29,371,035 3700 43, 47 4000 13,1719, 23, 29,37 37 41,43, 47 48,53 5 ¢
9,53, %5 50,61 65,67, 71,73, 77, 79,83, 8% 88, |96 .67, 71,73, 77, 79,83, 89,91, 87 181 183 1
91,95, 97,181,183, 187, 184| ot Ll
+
¢= Listl List2 ;: Filker/3-1 when first, Filter_nm=5,
succeeded
<= primes(F).
[+
| [o
Ll]

Figure6.11

Hands on Parlog for Windows 1.0 31

6.9.3 The Quicksort example

As afina channel spypoint example, load the 'QSORT.PAR’ file on the Parlog for Windows
distribution disk. The file contains a Parlog program for a classic list sorting procedure,
Hoare's Quicksort, specified as a concurrent algorithm:

node qsort(list?,sorted |ist”").
gsort ([N Rest], Sorted) <-
partition(N, Rest, LessN, MoreN),
gsort(LessN, SortedLess),
gsort (MreN, SortedMore),
append(SortedLess, [N SortedMore], Sorted).

gsort ([1.,[1)-
Test that it works with a query such as:
Sorted :: qsort([5,1,7,9,3,4,11,6,0], Sorted).

Such a query creates four concurrent processes. As the partiti on/ 4 process generates
data for LessN and Mor eN the gsor t / 2 processes reduce recursively. By inspecting the
procedures we can predict that the append/ 3 process will be forced to suspend until the
first of these qsor t / 2 processes has computed the minimum list element.

We could study the evaluation behaviour by setting a process spypoint on the gsort/ 2
relation. Instead, let us focus on the flow of data between the sub-processes: for the given
query, the dataflow through the process network isillustrated in Figure 6.12.

gsort

SortedLess =
[0,1,3,4]

LessN =
[1,3,4,0]

[5,1,7,9,3,

4,11,6,0] Sorted =
[0,1,3,4,5,
6,7,9,11]

SortedMore =
[6,7,9,11]

MoreN =
[7,9,11,6]

Figure 6.12

We can set channel spypoints on the variables LessN, Mor eN, Sort edLess, and
Sor t edMor e by the channel spy query:

LessN, MoreN, Sort edLess, SortedMbre :: qgsort/2-1 when first.
Then run the query:
Sorted :: qsort([5,1,7,9,3,4,11,6,0], Sorted).

as before. (Notice that we could have viewed the Sort ed channel by setting a channel
spypoint on Sor t ed in the first clause for gsort/ 2, instead of by displaying the query

32 Handson Parlog for Windows 1.0

=-| Paarlog for Windows bt Il
Eite Edit Search Famo Wincowr
='| Sorted -~ ='| Lessk qsortiz-1 -~
8.1,3.4.56.7, +0.3.4.8] ﬂ
3 (o]
=] Mara gsortiz-1 ==l =] SortedLess gsortiz-1 ==
grr.e.11,8) t]ie.1.3.4] ﬂ
+ [+
='| SortedMare qeortiZ-1 -
jis.7.8.11) ﬂ
Clause body terminated with result suceeeded
s
I+
+ [S
=1 I
Figure6.13

variable Sor t ed aswe did here.)

Dynamic windows will appear, displaying each of the spied variables, as shown in
Figure 6.13. You will also notice that, just before the evaluation ends, a "termination dialog"
appears. This serves two purposes: one is to tell you that a clause body has terminated; the
other is to allow you to inspect the contents of dynamic windows associated with this clause
body before they are deleted. Click the dialog's OK button to make the dynamic windows
disappear.

In general, whenever a call has previously committed in some context N to a clause R/A-
C which contains variables for which a channel spypoint has been set, Parlog for Windows
announces the termination of the call (i.e., the termination of the clause body) with a dialog
named R/ A- C: N, to identify the context in which a clause body has terminated.

Clicking on the dialog’s OK button will remove all channel spypoint windows which have
been created in context N to spy variables appearing in clause RIA-C. Of coursg, if the call’'s
evaluation is endless, as with the Primes Sieve example, such adialogue will never appear.

6.10 Clearing channel spypoints

When your channel-oriented debugging is al done you have a choice about what to do with
the spypoints which have been set.

If what is required is only temporarily to desist from channel spying, it would be best to
switch off debug mode by the query:

nodebug.

When debug mode is switched off, all currently set channel spypoints (as well as process
spypoints) are ignored. The program will execute as if no spypoints existed, but it will only
be necessary to switch debug mode back on and your spypoints will be recognized again.

The nospyal | / O primitive discards all spypoints (of both kinds). There is no way to
reverse this action other than by reinstating your spypoints one by one.

More selectively, channel spypoints can be removed by the nospy/ 1 primitive:

Hands on Parlog for Windows 1.0 33

nospy Relation/ Arity.

removes all channel spypoints and process spypoints associated with the specified relation,
while:

nospy Relation.

repeats this for all relations with the specified name, regardless of arity.

Alternatively, you can remove only the channel spypointsin a specific clause by entering
a channel spy query with no variables specified. For example, to remove the channel
spypoints for clause C of relation R/A, enter the query:

R A-C.

Channel spypoints for a relation, like process spypoints, will be removed permanently
whenever the relation is deleted, using kill/1 or reinitialize/0 or the
'Fi | e/ d ose Al |’ menuoption.

6.11 Summary of channel spying

It is worth summarizing here the main points to remember when setting and clearing channel
Spypoints.

Channel spypoints can be set on any variables occurring in bodies of clauses. They can
only be set aclause at atime, by a channel spy query, which takes the general form:

Inc:: Film::: Snap :::: R/A-C when Conditions.

Each of Inc, Film, and Shap is a variable name, or a list of variable names separated by
commeas, or the word al | . Any of the three variable lists may be omitted, provided the
following operator is aso omitted. Conditions is a condition (the word first or a
unification test), or a list of such conditions separated by commas. Conditions may be
omitted along with the preceding when operator.

A channel spy query will have no effect if relation R/A is not defined, or if its procedure
has fewer than C clauses. In this case, the spypoints will not be remembered for later use.
Otherwise, it first removes all channel spypoints from the Cth clause of R/A and replaces
them by spypoints on each of the variablesin the lists Inc, Film, and Shap.

The dynamic display format of each variable may be specified individually: variables in
Inc are displayed incrementally, those in Film are displayed in film format, while variables in
Shap appear in snapshot format. Any variable that is listed but does not appear in the
specified clause will be ignored; a variable that appears in both Inc and Film will be
displayed in incremental format only. Theword al | is shorthand for the list of al variables
in the body of clause R/A-C.

Conditions specifies the conditions under which the channel spypoints will be observed,
and these apply to all spypointsin the clause. If Conditions is omitted, the spypoints will be
observed every time a call to R/A commits to clause C. Otherwise, they will be ignored
unless all testsin Conditions are satisfied. A unification test T1=T2 is satisfied if T1 and T2
unify at the time of commitment, where variables in T1 or T2 are taken to be variables in
clause R/A-C if the names are identical, and otherwise are new variables. The condition
first issatisfiedif no spypoint for clause RIA-C is currently active.

34 Handson Parlog for Windows 1.0

Channel spypoints can be removed from the clause R/A-C by a channel spy query:
R A-C.

Alternatively, all channel spypoints on a given relation can be cleared by the nospy/ 1
primitive, or channel spypoints can be removed globally by nospyal | / 0.

Channel spypoints will not be observed unless debug mode is on. Debug mode can be
switched on and off by debug/ 0 and nodebug/ 0.

6.12 Pragmatics of debugging

This section describes some pragmatic aspects of debugging. In particular, it describes
Parlog for Windows's process tracing model in some detail and it explains the difference
between regular code and the "traceable” code that is needed by the process tracer. The
information provided here is not vital for most purposes and you may prefer only to skim it
briefly on afirst reading.

6.12.1 The processtracing model

Consider again the process tracer’s dialogue. This offers the following options:

film Create a special window in which the call term will be filmed, then restore the
dialogue with the optionsent er , unl eash, ski p,qui t .

enter Tracethe evauation of this call (process), but present atrace dialogue each time a
call inthe guard or body of this procedure is entered.

unl eash Trace the evaluation of this call exhaustively and without offering any further
trace dialogues.

skip Don't trace the evaluation of this call (except for any spypoints which might be
encountered) but only report its eventual success or failure.

quit Abort the evaluation of the query. This is equivalent to typing Ct r | - br eak
during execution.

The trace dialogue allows the programmer a fair amount of control over the quantity of
trace information which is written into the trace windows during an evaluation. You will
have noticed that atypical trace looks like this:

call integers(1l, 7C3A, _7C3D)
call 1 < 7C3A

suspend integers(1, 7C3A, _7C3D)
retry integers(1,5, 7C3D)
succeed 1 < 5

reduce-2 integers(1,5, 7C3D)
call integers(2,5, 979D

Altogether there are six kinds of trace message: cal |, suspend, retry, reduce,
succeed, and fai | . These correspond to the events in the "lifecycle" of a Parlog for
Windows process, which can be understood from the diagram in Figure 6.14.

Hands on Parlog for Windows 1.0 35

CALL marks the creation or spawning of the process.

SUSPEND marks the state in which the process has not yet found a candidate clause. For at
least one clause, input matching with the call has suspended and/or a guard
evaluation has not yet terminated.

RETRY marks Parlog for Windows's effort to make progress in finding a candidate clause.
Parlog for Windows uses a "busy-waiting” mechanism for process suspension, in
which the suspended call is retried on each timedlice until (if ever) a candidate
clauseisidentified.

REDUCE marks the commitment to a clause body following the discovery of a candidate
clause. A message of the form r educe- C identifies the Cth clause of the
appropriate procedure as the clause selected for commitment.

SUCCEED marks the successful termination of the process.

FAI L marks the termination of the processin failure.

CALL
./\
RETRY p4
SUSPEND
o U
REDUCE @
[[)
SUCCEED FAI L
Figure 6.14

6.12.2 Configuring the trace model

By default, the Parlog for Windows tracer reports all the events in the lifecycle of a traced
process. But this preset trace model can be changed. You may not want to trace suspend
andr et ry, for instance, since these events may represent only the "busy waiting" status of a
process which is awaiting the arrival of some data from elsewhere.

To reconfigure the trace model, usethedebug_opt i ons/ 3 primitive:

debug_opti ons(Suspend retry, Reduce, Succeed fail) .

Each of Suspend_retry, Reduce, and Succeed fail may be either on or of f . These determine
the trace model; by default they are all on. If Succeed fail ison, all succeed and f ai |

36 Handson Parlog for Windows 1.0

events are traced (otherwise these events are unreported). If Reduce is on, r educe events
are traced. If Suspend retry ison, suspend and r et ry events are traced. Note that the
cal | eventisaways traced.

As we have seen, the tracer normally creates windows dynamically to trace newly
spawned processes. This has the advantage that the traces of different processes appear in
different windows and can therefore be clearly distinguished. One disadvantage is the
memory overhead which the multiple windows incur. As an aternative, all trace messages
can be sent to the main screen. Aswell as reducing the demands on memory, this option also
helps by making explicit the chronological interleaving of the execution steps of different
ProCesses.

To direct trace information to the main screen, enter the query:

now ndow_debug.
Y ou can return to tracing in dynamic windows by the query:

wi ndow_debug.

6.12.3 Traceable and regular code

Perhaps you noticed that when tracing was first invoked for the Primes Sieve example,
Parlog for Windows automatically recompiled the program. The recompilation was indicated
by messages of the form:

primes/1 ... conpiled

which were displayed in a specia "status box" during the evaluation. This recompilation is
necessary because the Parlog for Windows tracer — which is actually a modified run-time
system — cannot operate with the regular object code that is generated by the compiler. It
requires a special "traceable" form of code which contains the information needed for writing
trace messages.

Parlog for Windows makes the change from regular to traceableaotmteatically. As
soon as query tracing is initially invoked, or when first a process spypoint is set for some
relation, the system itself will set an internal switch so that traceable code will be generated
for use in future evaluations.

When once the traceable code switch has been set all evaluations are supervised by the
special trace run-time system. This is the case whether or not query or spypoint tracing is
actually being performed. When a relation is called for which only regular object code exists,
its procedure is automatically recompiled to the traceable form of code.

Although Parlog for Windows will automatically activate the traceable code switch as
required, itnever automatically deactivates the switch. To do so could result in unnecessary
recompilation, for example, between removing one process spypoint and setting another. Itis
your responsibility to reverse the setting manually at some later time, by the query:

f ast code.

This will deactivate the traceable code switch, so that future compilation will restore the
regular form of code. Howevef,ast code/ 0 will have no effect while trace mode is
switched on or process spypoints still exist.

Hands on Parlog for Windows 1.0 37

Traceable code is logically equivalent to regular code. You could just leave traceable
code selected after atracing session and stick with it forever. The disadvantage of thisis that
traceable code is much slower and more demanding in use of memory. Usualy therefore,
you will want to use f ast code/ 0 to restore the regular form of code as soon as your
debugging activities are done.

6.12.4 Lazy and eager recompilation

The "silent” recompilation of code in mid-evaluation mentioned above is known as lazy
compilation or compilation by need. It is"lazy" in the sense that the revised form of code
that isrequired for arelation is not regenerated until the last possible minute, that is, until the
relation is called. As indicated previoudly, it is essential that a procedure should be
recompiled if the relation is called after the compiler has been switched from regular code to
traceable code, or vice-versa; recompilation is also required if achannel spypoint has been set
for, or removed from, a relation since the relation was last compiled. The idea behind lazy

recompilation is to try to reduce the recompilation effort — only that code which is necessary

for the current evaluation is affected.

The possible disadvantages of lazy compilation are that compilations which take place in
mid-evaluation occupy additional time and memory, and in some circumstances they could
be distracting. Where this matters you can always force Parlog for Windows into an

immediate recompilation of all code just by entering the query:

conpi | e.

In a sense, this command actually does two things: it generates original object code from
newly loaded or edited procedures and it immediately updates all existing object code

according to the current trace and spypoint settings. So if you usertipeé | e/ O primitive

immediately before running a query you can be sure that compilations will not occur in mid-

evaluation.

38 Handson Parlog for Windows 1.0

7 Incremental keyboard input

The Parlog for Windows query system implements a convenient top-level interface to Parlog.
For keyboard input it is sufficient for many purposes ssimply to type directly into the query
the initial data which is to be processed by the query calls. For example, to test aqsort/ 2
procedure we might enter a query like:

Qut :: gsort(ln,Qut), In = [56,34,89,67,44,12,67].

But in testing concurrent programs we will often want to supply keyboard input to some
process or processes incrementally as the process is executing. This section describes how
incremental keyboard input can be programmed in Parlog for Windows. The primitives
which are introduced here are documented formally in Section 13.7.

7.1 Programming interactiveinput

One way in which a program can input aterm is by calling a primitive such asr ead/ 1. The
behaviour of acall such as:

read(Tm .

is to wait for the user to type in aterm; on typing Ret ur n, the r ead/ 1 process terminates
with the variable Tmbound to the term typed, provided it is syntactically correct. This term
could be of arbitrary type, for example it might be alist.

We should mention here a possible problem with r ead/ 1. For aslong asaread/ 1
process is active, that is, until Ret ur n is typed, any other concurrent Parlog processes are
temporarily locked out. In effect the interactive input monopolizes the computer’s solitary
processor.

7.2 Incremental interactive input

Something as simple as asingle call to r ead/ 1 may suffice for certain applications. But in
many interactive programs it is desirable that the value of the variable Tmshould be a stream,
i.e., alist of terms which is generated over a period of time, typically for consumption by
some other concurrent process. A first attempt to program this might be the following
procedure:

node read_terns(inputs”®).

read_ternms([Tm Tns]) <-
read(Tm &
read_terns(Tns).

but the problem with this is that the whole Parlog for Windows system will suspend each
timer ead/ 1 iscaled, as mentioned above, even if there are other runnable processes.

Because of this property of the read/ 1 primitive, the read_t erns/ 1 procedure
defined above implements synchronous interactive input. The program and the user are
synchronized at each input event, because each term will be read in only when the program
requests input (by calling r ead/ 1) and the user suppliesit (by typing aterm).

Hands on Parlog for Windows 1.0 39

7.3 Asynchronousinteractiveinput

Synchronous input is quite acceptable in some cases, but often it is preferable to accept input
from the user asynchronously, i.e., whenever the user is ready to input.

Sections 7.5 and 7.6 describe some high-level primitives which fulfil this requirement.
However, it is interesting to see how we could implement the behaviour with a procedure of
our own, perhaps something like this one:

node async_read_terns(inputs”).

async_read_terns([Tnj Tns]) <-
async_read(Tm &
async_read_terns(Tns).

node async_read(i nput?).
async_read(Tn) <-

key(_) &

read(Tm.

The call to the key/ 1 primitive is very important. Its behaviour is to suspend until any
key (or mouse button) is pressed, and then succeed. The character typed is returned as the
call’'s argument; in this example it is simply ignored. Withasync_read_terns/ 1 auser
can summon an input dialogue by pressing a key whenever a new term is to be added to the
stream: the other processes will be interrupted only when necessary, i.e., during each input,
using read/ 1. An elaboration of the definition would permit the stream ultimately to be
closed, perhaps after some specially recognized term is read.

Incidentally, notice the use of the sequential conjunction operator '& in both the
async_read_t erns/ 1 procedure and theasync_r ead/ 1 procedure. Had we used the
parallel operator inasync_read_t erns/ 1, alarge number of callsto key/ 1 would soon
be concurrently active; in fact the quantity of such calls would grow without limit (or rather,
subject only to memory limits). Obviously this would be grossly inefficient. Worse still, it
would become effectively a matter of chance as to which call consumed a new keypress.
Hence the order of characters output on the stream would be unlikely to agree with the order
in which keys were pressed. In generad, it is not useful to have more than one key/ 1
process active at any one time.

The key/ 1 primitive is implemented by keyboard polling which is carried out at quite a
low machine level. A cal to it will not lock out other concurrent Parlog processes, as would
acal to a "higher-level" input primitive such as r ead/ 1 for example. In consequence, a
process could run in paralel with our async_read_terns/ 1 process, which could
consume the stream of charactersincrementally as they are generated at the keyboard.

7.4 Stream character input

Almost al of the input primitives (such as get 0, r ead, etc.; see Section 13.7) that read
from the channel named user actually obtain their input from the console window. When
such an input primitive is called, any characters typed are displayed in the console window
and can be edited at |leisure before typing Ret ur n.

As mentioned above, a key/ 1 cal obtains its character directly from the keyboard (or
mouse). There is another primitive that works in a similar way: a call to get key/ 1 reads

40 Handson Parlog for Windows 1.0

and returns the first character that has been typed at the keyboard (or mouse). In both cases,
the character is read invisibly without displaying it on the screen, and without the need for
Ret ur n to betyped. The difference between key/ 1 and get key/ 1 isthat the latter will,
liker ead/ 1 etc., cause the Parlog for Windows system to hang until a character is typed.

The get key/ 1 primitive can be used for synchronous input, but it is particularly useful
in conjunction with key/ 0 to program asynchronous character input. For example, it is easy
using this primitive to define arelation which generates a stream of characters typed:

node chars(”).

chars([Char| Chars]) <-
key &
get key(Char) &
chars(Chars).

Y ou may like to define this procedure and try a query such as:
C :: chars(Q.

Press afew keys and watch what happens. The simple version which we have defined hereis
non-terminating, so eventually you will need to hit Ct r | - br eak in order to interrupt the
process.

7.5 Thei n_stream 1 primitive

In reality, there is no need to define your own stream input procedure like
async_read terns/1 above since Parlog for Windows provides a primitive
In_stream 1 which implements the required behaviour. The definition of
i n_strean 1 isessentially an elaborate extension of async_read_terns/ 1.

The simplest way to illustrate the primitiveis to try the query:

Tns ::: in_stream(Tns).

At first after entering this query nothing appears to happen, but as soon as you press any key
an input dialog like this one pops up:

input

| 0OK End Cancel

Type any term into the dialog followed by a period character, and then click on the OK
button. The binding for Tns in the film window will then be updated to show the entered
term. Theinput dialog disappears, but it can be reinstated at any time by hitting another key,
and you can continue in this way to bind Trrs incrementally, over an arbitrarily long period
of time. One possible interaction sequence might be like this:

Characterstyped Button clicked Binding for Tns
1. (0 1¢ [1] _45C8]
2. (0 1¢ [1, 2] _40C1]

End [1’ 2]

Hands on Parlog for Windows 1.0 41

Anin_strean 1 process terminates when the End button is clicked, in which case
any term typed into the dialog is ignored. In this example Trrs is left with the final value
[1, 2] . In passing, note that the Cancel button permits the removal of the input dialog
without affecting the value of the variable, in case the input dialog should ever be summoned
by mistake.

Of course, there is not much point in running ani n_st r eani 1 process by itself. More
typically, there will be some other concurrent process which consumes the data that is being
entered. As an example, you may like to load the squar es/ 2 procedure which is in the
'SQUARES.PAR' file on the distribution disk. Then a query such as:

all ::: in_streamInts), squares(lnts, Squares).

will enable you to enter a stream of numbers over a period of time, hitting any key as before
to summon the input window whenever you like. As the numbers are entered the
corresponding list of squares will be computed for the Squar es variable and thislist will be
made visible by the dynamic display. Clicking the input window’s End button will terminate
the processes.

Finally, note that the system definition of i n_st r ean’ 1 includes a cal to the key/ 1
primitive, which polls the keyboard. Since key/ 1 responds to any keypress it will not
normally be useful to have more than onei n_streanl 1 process (or ani n_stream 1
process with a key/ 1 process) active concurrently. However, there is a way to generate
multiple input streams incrementally; see the description of thei n_st reans/ 1 primitive
below.

7.6 Multipleinput streams

As mentioned above, it is not useful to have more than onei n_st r eani 1 process active
concurrently. However, Parlog for Windows provides another primitive i n_streans/ 1
(note the plural) which does support multiple input stream generation from the keyboard.

To demonstrate this primitive, run the query:

all ::: in_streams([a(A),b(B),c(O]).

To enter terms, you can now hit one of the "wakeup" keys'a’, 'b’, or 'c’; any other key will
produce only a beep from the computer’'s speaker. In response to one of the three wakeup
keys Parlog for Windows will generate an input dialog which will accept terms for the
corresponding stream. For example, if your first action isto hit key b’ then adialog like this
one will pop up:

inputb

| OK | End |Qance|

This input dialog is similar to that described above for i n_st reant 1, but it is selective in
that terms typed into it will be output to the stream B (i.e., to the stream associated with the
wakeup key included in the dialog name). Suppose that you enter the integer 1 followed by a
period, and then click OK. Then in the film window for the variable B you will see a binding
of the form [1| _9ADF] . The input dialog disappears and now you may make your next

42 Hands on Parlog for Windows 1.0

choice, hitting one of the keys 'a’, 'b’, or 'c’ as before. By continuing in this way over a
period of time the three variables A, B, and C become incrementally bound to the entered
streams of terms.

Aswithi n_streant 1, concurrently active Parlog processes are not locked out by the
presence of ani n_str eans/ 1 process except during the periods when an input window is
on display. Once a stream has been closed, by clicking the appropriate input dialog’s End
button, the process ceases to recognize that stream’s wakeup key. The process will terminate
only when all of its streams have been closed.

A simpleway totesti n_st r eans/ 1 isto load the ' FMERGE.PAR’ example, provided
on the Parlog for Windows distribution disk. This program defines the "fair" version of the
merge relation fair_nmerge/ 3 which is described in Chapter 6 of Programming in
PARLOG. Enter the query:

all :: fair_nerge(A B, Merged), in_streans([a(A),b(B)]).

By pressing key 'a’ or ‘b’ you will be able to supply data for the inputs to the
fair_merge/ 3 processin any desired sequence. The resulting binding for the merged list
will be visible in the dynamic display window for variable Mer ged.

In general, acal toi n_streans/ 1 can specify any list of terms each of the form
c(V) where c is asingle character atom representing the wakeup key and V is the variable
which is to receive the binding. A term ot her (V) may aso be included at the end of the
list, in which case any key other than those named elsewhere on the list will act as a wakeup
key for the variable V. Try aquery such as:

all :: in_streams([x(X),y(Y),other(Qher)].

Supply some data, noting that any key other than ’x’ or 'y’ will act here as a wakeup key for
the variable Ot her , and investigate the behaviour for yourself.

Hands on Parlog for Windows 1.0 43

8 Thedatabaseinterface

Database relations, sometimes called all-solutions relations, have the property that a call to
such a relation can compute multiple solutions. This contrasts with relations defined in
Parlog, for which a call can only ever generate at most a single solution. See one of the
books mentioned in Section 1.1 for afull account of the role of database relations in Parlog.

In Parlog for Windows a program can contain any mixture of Parlog procedures and
database procedures. A database procedure comprises any set of assertions preceded by a
database declaration, of the form:

dat abase R/ A.

where R/A is the name and arity of the database relation defined by the subsequent clauses.

Database procedures are not Parlog procedures: they have no mode declarations, for
example, and they may not be called directly from a Parlog query. A database relation is
accessible to a Parlog computation only through the set / 3 and subset / 3 primitives, both
of which are documented in Section 13.6.

8.1 Entering a database procedure

Database procedures are |oaded in the usual way, via program windows or directly, using the
| oad/ 1 primitive. Here is an example which you will find in the file' DATABASE.PAR’
on the Parlog for Windows distribution disk:

dat abase sal es/ 3.

sal es(bul bs, 10, date(10,jan)).

sal es(fuses, 3,data(10,jan)).

sal es(batteries, 14, date(14,jan)).
sal es(fuses, 2,date(15,jan)).

sal es(el ements, 1, date(28,jan)).
sal es(bul bs, 2, date(28,jan)).

sal es(fuses, 5,date(3,feb)).

sal es(sol der, 1, date(6,feb)).

In general, a program file may contain any mixture of procedures for both Parlog and
database relations, in any order: they are distinguished by their distinct declarations.
However, it is not possible to have both Parlog and database procedures for the same relation
(i.e., the same relation name and arity). As with Parlog procedures, the clauses of an
individual database procedure must be contiguous.

8.2 Commandsfor databaserelations

The functionality of the Parlog for Windows commands extends, where appropriate, to cover
database procedures. For example, programs which include database procedures can be
| oaded, saved, and | i st ed in the same way as pure Parlog programs.

Externaly devised text-file databases can be imported into Parlog for Windows. In
particular, text files of assertional Prolog clauses can be read into Parlog for Windows after
adding a suitable dat abase declaration. Imports from other database systems will

44 Hands on Parlog for Windows 1.0

generally require that records be converted to clause form.

8.3 Interrogating databaserelations

Database relations such as sal es/ 3 in the example shown above cannot be called directly.
For instance, a query:

sal es(bul bs, Onty, D).

entered directly will not deliver the quantities and dates of sales of bulbs. Access to
sal es/ 3, and to any other database relations, is solely via the set/ 3 and subset/ 3
primitives, these are the eager and lazy set constructors as described in the books by Conlon
and Gregory.

The set/ 3 primitive allows us to formulate a query which will return the required
information. For example:

Dates : set(Dates, D, sal es(bul bs,Onty,D)).
will give the solution:
Dates = [date(10,jan), date(28,jan)]

whichisalist of al individual solutionstothesal es/ 3 relation call.
An aternative query, to the subset / 3 primitive, which could be used to solve the same
problemis:

D1, D2 : subset ([D1, D2], D, sal es(bul bs, nty, D)).
This query will bind the "demand variables® D1 and D2 to the respective solutions:

D1
D2

date(10, an)
dat e(28,]j an)

The distinguishing feature of subset / 3 isthat its solutions are computed lazly, that is, in
response to demands which typically are generated by some other concurrent process. Thus a
subset / 3 process could be long-lived. In contrast, aset processis typically short-lived:
it eagerly (and fairly rapidly) computes the list of all solutions.

Only asingle call to a database relation may appear withinset / 3 and subset / 3 calls:
conjunctions of calls are not allowed. Of course, calls to set/ 3 and subset/ 3 may
appear within the bodies of Parlog clauses, thus enabling database information to be
processed by Parlog for Windows programs in a fully general way. The file
'DATABASE.PAR’ on the Parlog for Windows distribution disk illustrates some of the
possibilities.

Hands on Parlog for Windows 1.0 45

9 Miscellaneousfeatures

9.1 Commentsin programs

A Parlog for Windows program may contain comments. A comment is any text that begins
with / * and ends with */ , or any text between a’'% character and the end of the line. These
comments are ignored when a program is read into memory. This means that if you use the
save/ 1 or save/ 2 primitive to write the program back into afile, any comments will have
disappeared.

Parlog provides another form of commenting: atomic identifiers can be inserted in mode
declarations to document the role and type of arelation’s arguments. For example:

node insert(integer?,ordered |list?,inserted |ist”").

These mode identifiers are preserved in the internal form of a program stored in memory, and
are therefore output by thesave/ 1 or save/ 2 primitives.

9.2 Queriesin programs

A Parlog for Windows program may include queries as well as procedures. A query isaterm
of the form:

<- Conjunction.

When the program is loaded into memory (using the 'Run/ Load Al | * menu option or the
| oad/ 1 primitive) the Parlog conjunction Conjunction is executed immediately. Success or
failure is not reported: whether the query succeeds or fails, the loading will continue.
However, an error during the evaluation of Conjunction will cause the loading to be aborted
with an appropriate error message.

One use of queriesin programs is to make operator declarations. If a program contains a
procedure which uses non-standard operators, these should first be declared by a call to the
op/ 3 primitive. The best way to make this declaration is by a query embedded in the
program file, textually preceding the procedure. The operator will then be declared by the
time the procedureisread in.

Another important use for queriesin programsis to issue directives; see Section 9.2.

9.3 Setting compiler directives

One class of Parlog for Windows primitives is known as directive primitives: these are
optimze/l and optim ze/ 2, used to select or deselect certain compile-time
optimizations, and dept h/ 1 and dept h/ 2, which can be used to change the call evaluation
depth.

Like severa other primitives (such as op/ 3 and the debugging primitives described in
Section 6), directive primitives change the state of the Parlog for Windows system. They
differ from most other primitivesin that they affect the way in which the Parlog for Windows
compiler works. after using a directive primitive, some or all procedures may need to be
recompiled before a query can be run. (Parlog for Windows takes care of this compilation
automatically, of course.)

46 Handson Parlog for Windows 1.0

Directive primitives have the effect of setting or removing compiler directives. A
compiler directive specifies avalue for one of the two optionsopt i m ze and dept h.

There are two types of directive: alocal directive associates a value with an option for a
specific relation; a global directive associates a value with an option for all relations except
those for which a loca directive exists. When compiling a procedure, the compiler checks
whether a local directive exists for the relation. If so, the specified value for the option is
used, otherwise it looks for a global directive. If agloba directive exists, the specified value
is used, otherwise the compiler uses the default value for the option.

A global directive can be changed by acall of the form:

<- Option Value.

which replaces any existing global directive for Option by a global directive that associates
Value with Option.
A locdl directive can be added by acall of the form:

<- Option(R/ k, Value) .

which replaces any existing local directive for Option for relation R/k by alocal directive that
associates Value with Option.
A local directive for Option can be removed from relation R/k by a call:

<- Option R/ k.

When a program is listed or saved (using the | i sti ng or save primitives), queries to
directive primitives are embedded in the program if necessary, so that if the saved program is
reloaded the state of the directivesis automatically reconstructed.

The options available, and their possible values, are explained in detail in Section 13.12.

9.4 Windows

Windows and dialogs are dynamically created by Parlog for Windows for several purposes,
as described in this Guide. There are also a few primitives, crwi nd/ 5, cuwi nd/ 1, and
di al og/ 4, which allow Parlog programs to create windows and dialogs; see Section 13.8.
Note that user-created windows should not be named by atoms that begin with a space
character, since these names are reserved by the system.

9.5 Configuring Parlog for Windows
The memory space of Parlog for Windows s divided into six areas:

Backtrack stack.

Local stack.

Reset stack.

Heap (stores structured terms).

Text heap (stores atoms).

Program heap (stores program code).

Hands on Parlog for Windows 1.0 47

The initial size of each areaisfixed at the time the Parlog for Windows system is started;
these are displayed in the banner (to the nearest Kbytes).

As the system is used to load and run programs some of the memory space is used up.
Y ou can find out how much space remains in each of the six areas at any time by calling the
free/ 6 primitive. Normally you need not be concerned about this, but eventually you may
encounter one of the "memory full" errorslisted in Section 11.3. When this happens, you can
restart Parlog for Windows with a different configuration, increasing the size of the area that
has filled up. Before doing this, you might like to use the f r ee/ 6 primitive to find out
which area(s) need expanding. Most Parlog programs will not make much use of the
backtrack or reset stacks, so these areas could probably be reduced in size.

Parlog for Windows can be configured by specifying the desired size of each of the
memory areas, in "switches' that follow the word PARLOG on the DOS command line.
These switches are:

/ bB set the backtrack stack spaceto B-1 Kbytes.
/1L settheloca stack spaceto L-1 Kbytes.

/ rR set thereset stack spaceto R Kbytes.

/ hH set the heap space to H-4 Kbytes.
/tT setthetext heap spaceto T-135 Kbytes.
| pP set the program heap spaceto P-797 Kbytes.

Note that to set a memory area to a certain size, you have to specify a larger size in the
switch. This is because the Parlog for Windows system itself uses some of each area,
especially text space (135 Kbytes) and program space (797 Kbytes).

The default values are as specified by the switches:

/b64 /164 /r64 /[h128 /t 256 / p2048

which provides approximately 63K backtrack stack space, 63K local stack space, 64K reset
stack space, 124K heap space, 121K text heap space, and 1251K program heap space.

9.6 Porting Parlog for Windows programsto other systems

MacParlog (also a product of PLP Ltd.) is an implementation of Parlog for the Macintosh™
family of machines. Its programming environment differs somewhat from Parlog for
Windows, and there are also differences between the sets of primitives supported by these
systems, notably concerning I/O. However, the MacParlog compiler is basically the same as
that for Parlog for Windows and, if machine-specific features are avoided, it should be
straightforward to exchange source programs between these systems (although of course the
disk formats are different!).

Some Parlog implementations, and also certain Parlog derivatives such as Strand and
KL1, do not support "deep" guarded clauses. In these languages guards must be "flat": they
may contain only calls to language primitives. If you intend to port a Parlog for Windows
program to one of these non-standard languages you should check for such restrictions in
advance, since they can imply a considerable effort in translation from full Parlog.

Other languages closely related to Parlog include Guarded Horn Clauses (GHC) and
Concurrent Prolog (CP). The boBkogramming in PARLOG contains suggestions on how
Parlog programs need to be transformed in order to run under GHC or CP.

48 Handson Parlog for Windows 1.0

10 Syntax and semantics

Parlog for Windows is consistent with the standard Parlog syntax and semantics used in the
book Programming in PARLOG. However, some aspects are specific to this implementation.
This section describes Parlog for Windows syntax in detail, first informally and then formally
in BNF. It also explains precisely how the test-commit-output-spawn model of process
behaviour which is described in the book is implemented in Parlog for Windows, including
the "busy waiting" implementation of process suspension, the process-to-processor
scheduling mechanism, and the role of the compiler directives.

10.1 Syntax of conjunctions

A Parlog for Windows conjunction is constructed from calls to Parlog relations, using the
infix operators’, ’ (parallel conjunction) and '&’ (sequentia conjunction). In the query:

calll, call?2.

calll and cal | 2 are evaluated concurrently, timesharing between the calls. Bounded depth-
first scheduling is used, so each call will only be executed to a certain depth in its timeslice.
By using '& instead of ’, "

calll & call 2.

we can ensure that cal | 1 will be evaluated to completion before cal | 2 is started. The'&
operator has a higher precedencethan’, ', i.e., '& islesstightly binding. So, in:

calll, call2 & call 3.

callland cal | 2 are evaluated concurrently, but must terminate before cal | 3 is started.
Parentheses can be used to group calls in a conjunction, so ‘& and ’, ’ can be mixed
arbitrarily, e.g.:

(calll & call?2), (call3 & call4).
Theform of arelation cal is:
R(t1, ..., tk)

where Risthe relation name, itsarity isk, andt 1, , t k are terms (which could be numbers,
atoms, variables, lists or structures). Each call must be either acall to a Parlog primitive or to
a user-defined Parlog relation.

10.2 Syntax of programs

A Parlog for Windows program comprises a set of procedures defining Parlog relations. A
Parlog procedure consists of a mode declaration followed by one or more valid Parlog
clauses. The mode declaration takes the form:

node R(nl, ..., nk).

Hands on Parlog for Windows 1.0 49

which declares a Parlog relation with name R and arity k.

Note that Parlog for Windows imposes a dight restriction on relation names: they must
not begin with a space character, eg. ° add’ ; neither may you redefine a Parlog for
Windows primitive by declaring a procedure with the same relation name and arity.

Each m is either '?’ (to indicate that this argument is input) or "’ (output). Optionally,
the "?’ or " may follow a mode identifier (an atom) as a postfix operator. These identifiers
areignored by the system; they are for the purpose of documentation only.

The clauses that follow the mode declaration take the form:

R(t1, _, tk) <- CGuard : Body.

in which the Guar d and Body are Parlog conjunctions, as described above. If the body is
empty, it must be replaced by the symbol t r ue. If the guard is empty, it can be omitted
together with the . . If the guard and body are both empty, the '<-’ operator can also be
omitted.

The clauses in a Parlog procedure may be combined using '. * (parallel search) and ’;°
(sequential search) operators. The ’; ' operator has a higher precedence, i.e., it binds less
tightly, than *. °. Clause groups may not be parenthesized. The role of ’; ’ is to divide a
procedure into two or more groups of clauses. clauses within a group are tried concurrently,
while clauses in subsequent groups will not be tried until all clauses in the group are found to
be non-candidates.

10.3 Examples

Here are some examples of Parlog for Windows procedures:

node mults(”).

mul ts(X) <-
timeslist(2,[1] X, X2),
timeslist(3,[1] X, X3),
timeslist(5,[1] X, X5),
aner ge(X2, X3, X23),
aner ge(X23, X5, X) .

node anerge(listl?,1ist2?, merged |ist”?).
amerge([U X],[Y Y], [UZ]) <
anerge(X Y, 2).
amerge([U X ,[MVY],.[UZ]) < U< V:
anmerge(X, [V]Y], 2).
anerge([U X ,[VIVY],[MZ]) <- V< U:
anerge([U X],Y, 2).

node ontree(iten®?, | abell ed _tree?).
ontree(U t (U, ,)).

ontree(U,t(_,L,)) <- ontree(U, L) : true.
ontree(U,t(_, ,R) <- ontree(U, R) : true.

50 Handson Parlog for Windows 1.0

node swite list(list?).

swite_ list([HT]) <-
data(H &
wite(H &
swite_list(T).

swite_list([]).

10.4 Operators

The following operators are predeclared in the Parlog for Windows system:

1200 fx - 1200 fx ?-

1200 xfx :- 1200 xfx -->

1150 fx dynamc 1150 fx initialization
1150 fx nmeta_predicate 1150 fx nultifile
1150 fx public 1150 fx volatile
1100 xfy ; 1100 xfy |

1075 fx <- 1075 xfx <-

1050 fx database 1050 fx debuggabl e
1050 fx depth 1050 fx node
1050 fx optimze 1050 fx prolog
1050 fx version 1050 xfy :

1050 xfy :: 1050 xfy :::

1050 xfy :::: 1050 xfy ->

1025 xfy & 1025 xfx when
1010 xfx @ 1000 xfy

900 fx one 900 fy \+

900 fy nospy 900 fy not

900 fy spy 850 yfx <~

850 yfx ~> 700 xfx ==

700 xfx =\= 700 xfx <

700 xfx =< 700 xfx >

700 xfx >= 700 xfx =

700 xfx \= 700 xfx ==

700 xfx \== 700 xfx <=

700 xfx =.. 700 xfx @

700 xfx @< 700 xfx ©@

700 xfx = 700 xfx is

500 fx + 500 fx -

500 yfx + 500 yfx -

500 yfx /\ 500 yfx \/

400 yfx * 400 yfx [/

400 yfx [/ 400 yfx <<

400 yfx >> 300 xfx nod

10 xf 7 10 xf A

Additionally you may define your own operators using the op/ 3 primitive; see
Section 13.13.

Hands on Parlog for Windows 1.0 51

10.5 BNF syntax definition

Parlog syntax is defined here in a variant of BNF. Terminal symbols are enclosed in single
guotes; non-terminal symbols have upper case initials. The metasyntactic constructs used
are;

| disunction
[item] 0 or 1 occurrences of item
{ item} 0 or more occurrences of item

A Parlog procedure is defined as Pr ocedur e:

Procedure = Mbde_declaration .’
{ Parallel _group ';’ }
Parall el _group '.’
Paral | el _group = { Cause '".’ }
Cl ause
Mode decl arati on = ' node’
At om
[" { Arg_node *," }
Arg node ')’]
Ar g _node = [Atom] ' ?
| [Atom] '*
Cl ause = Literal
["<-" [Conjunction ':’]

Conj unction]

Conj unct i on = { Parallel _conjunction & }
Paral | el _conjunction

Paral | el _conjuncti on { Unit_conjunction '," }

Unit _conjunction

Unit _conjunction = Literal
| " (Conjunction ')’

At om
| Structure

Li teral

Nunber

At om

Vari abl e
Li st
Structure

[
]

Term

Li st = ’
{ Term’,” } Term]|[|’ Term]]

,[

52 Handson Parlog for Windows 1.0

Structure = Atom
(" { Term’,” } Term’)’

The above BNF leaves several symbols undefined:

Vari abl e: anidentifier beginning with an upper case |etter.
| nt eger: aninteger.
Nunber: aninteger or floating point number.
At om an identifier that is not avariable,
or any character string in single quotes.

Note that the Li st syntax isjust shorthand for a term composed of the binary functor .’
andtheatom [] . So, for example, the following equivalences hold:

[a] = .(a,[])
[a,b] = .(a,.(b,[]))
[al X] = .(a X)
[a, bl X] = .(a,.(b,X))

There is another shorthand form. A string of characters enclosed in double quotes represents
alist containing the numeric codes of those characters, for example " bob" is equivalent to
thelist[98, 111, 98] .

10.6 Operational semantics

The purpose of this section is to enable you to write Parlog for Windows programs that
perform efficiently, in terms of execution speed or memory usage, and to avoid some
problems that are occasionally encountered. This requires an understanding of some aspects
of the Parlog for Windows implementation, which we describe first.

10.6.1 Matching and guard execution

Many Parlog clauses include some implicit matching operations (one-way unification and
test unification) which are treated as part of the guard. For example, the clause:

r(k(X),xX) <- g : b.
(inmoder (?, ?)) can be rewritten as:
r(Al, A2) <- g : b.

where g’ includes the implicit matching calls k(X) <= Al and X == A2 aswéll as the
origina guard g. In fact, exactly this transformation is one of the early steps in the
compilation of the clause.

In standard Parlog, as described in Programming in PARLOG, the implicit matching calls
are all concurrently evaluated with the guard, i.e., the transformed clause is:

r(Al, A2) <- k(X) <= Al, X == A2, g : b.

The effect of thisisthat, if any part of the matching fails, the whole guard will fail.

Hands on Parlog for Windows 1.0 53

For the sake of efficiency, the Parlog for Windows compiler departs from this rule. The
way in which the matching is added to the guard is complicated and depends on several
factors, including the current setting of the opti m ze directive. For example, the
arguments might be tested sequentialy in some order, or a guard might suspend until all
arguments it requires are available before testing any of them. The important point is that the
implicit matching calls are not necessarily added in paralel with the guard. The result is that
aguard might suspend in cases where, in standard Parlog, it would fail.

For example, given a procedure containing a single clause:

node p(?,7?,7?).
p(c(X),d(X), X).

each of the calls:

p(e, A B).
p(A, e, B).
p(c(e),d(f),X).
p(c(e),Af).
p(A d(e),f).

should fail in standard Parlog. In Parlog for Windows they either fail or suspend.

This behaviour only affects the suspension or failure of guards: a guard that succeeds in
standard Parlog is guaranteed to succeed in Parlog for Windows. Normally this also means
that a call which can be reduced (to some clause body) in standard Parlog will aso be
reduced in Parlog for Windows. However, if the sequential clause search operator (;) is
used in a procedure, a call may suspend (because a guard before the ’; * is suspended) instead
of reducing (using aclause after the’;).

To ensure that Parlog for Windows programs behave as expected, you should not make
any assumptions about the order in which the implicit matching is performed. If the standard
Parlog (concurrent) order is essential, it should be written explicitly in the program. For
example, the above clause can be rewritten as:

p(AL, A2, A3) <-
(c(X1),d(X2)) <= (AL, A2), (X1,X1) == (X2, A3)
true.

10.6.2 Concurrency in Parlog for Windows

All Parlog systems include a scheduler, which allocates Parlog processes to the fixed number

of processors available — one, in the case of Parlog for Windows. A process might be a call
in an and-parallel conjunction or a guard in an or-parallel clause search, for example. Most
Parlog systems, including Parlog for Windows, provide a guarantee of fairness:

and-fairness: In a parallel conjunction, every call will be executed eventually.

or-fairness: In a parallel clause search, every guard will be executed eventually.

This ensures that a non-terminating process (which may have been created accidentally) will
not cause the entire computation to hang indefinitely.

The Parlog for Windows scheduler ensures fairness bguaded depth-first strategy,
which is described in the next two sections.

54 Handson Parlog for Windows 1.0

10.6.3 Fair and-parallelism

Every and-parallel conjunction (there is one for the query, and there may also be lower-level
ones inside sequential conjunctions, guards, or metacalls) is implemented by a queue of
processes. one process for each conjunct. The scheduler repeatedly takes a process from the
front of the queue, runsit for awhile, then defers any unfinished processes by returning them
to the rear of the queue. The latter step ensures that the subsequent processes in the queue
will eventually also be executed. A scheduler cycle is complete when all processes in the
gueue have been treated in this way. To run the top-level query, the scheduler repeatedly
cycles through the process queue until it is empty, or a process fails.

In more detail: a process which is a member of an and-parallel conjunction may be one of
the following:

e Acall
* An uncommitted clause search.
* A sequential conjunction.

* A control metacall.

Every call has an associatédpth allowance, which is initialized to the depth bound
specified at compile time. When a call is scheduled, the system tries to find a candidate
clause, as described in the next section. Assuming that the call is successfully reduced to
some clause, it will be replaced at the front of the process queue by the calls in the clause
body; these body calls have a depth allowance which is one less than that of the parent call.
Next, the scheduler will pick the leftmost of the body calls to execute and this leftmost call
will be replaced at the front of the process queue by its selected clause's body calls, and so
on. Eventually the depth allowance of the calls at the front of the queue will reach zero.
When the scheduler encounters a call with a depth allowance of zero it defers the call by
immediately moving it to the rear of the process queue, resetting its depth allowance to the
depth bound as it does so.

When a sequential conjunction is scheduled, its first conjunct (in general this is a parallel
conjunction) is executed by performing one scheduler cycle through the corresponding
process queue. If the queue becomes empty, the remainder of the conjunction is immediately
executed, otherwise the sequential conjunction is deferred with its first conjunct in the
advanced state.

When a control metacall is scheduled, one scheduler cycle is performed on the process
gueue representing its sub-computation. Then if the new queue is empty the metacall
succeeds, otherwise it is deferred with this new queue.

10.6.4 Fair or-parallelism

Or-parallelism is implemented in a very similar way. When a call is executed, it becomes a
clause search process. Such a process keeps a clause queue: a queue containing one process
gueue for each non-failed guard in the procedure. The clause search proceeds by executing
one scheduler cycle of each process queue in turn. If some guard's process queue becomes
empty, the search commits: output unification is performed and the clause body is
immediately executed. If a guard fails, it is ignored, otherwise it is added with its new
process queue to the rear of the clause queue. After one cycle through the clause queue, the
clause search process fails if the queue is now empty, otherwise it is deferred with its new

Hands on Parlog for Windows 1.0 55

clause queue.

The above mechanism ensures that a non-terminating guard cannot indefinitely delay the
execution of arival guard, or of a call running in and-parallel with the clause search process.
(In the case of procedures with only empty guards there is no danger of this and a more
efficient method is used.)

Fair or-parallelism ensures that any clause with aguard that could succeed will eventually
be recognized as a candidate clause (unless another clause commits first). It says nothing
about which candidate clause is chosen if there is more than one; in this case Parlog for
Windows may be biased towards a certain clause, probably the first one textually. For a
discussion of fair and biased behaviour, see Section 6.10 of Programming in PARLOG.

10.6.5 Busy waiting

The above account has ignored the question of how to handle suspension. In some Parlog
systems a suspended process is removed from the scheduler’s process queue and associated
with the variable(s) it is waiting for; it will be reawoken only when one of these variables is
bound. In contrast, Parlog for Windows simply adds a suspended process to the rear of the
runnable queue. This means that it will be retried after one scheduler cycle, whether or not it
can make any further progress. This scheduling strategy is aptly named busy waiting.

10.6.6 Viewing the scheduler’s behaviour

Parlog for Windows's process tracer shows some aspects of the behaviour of the scheduler.
Theeventcal | r(t1, ,tn) indicatesthat acall process has been scheduled. An event
suspend r(t1, ,tn) shows the suspension of a clause search process, while
retry r(tl, _,tn) indicates that such a process is being rescheduled. An event
reduce r(t1, ,tn) signalsthecommitment of aclause search process.

Because of the busy waiting strategy, a suspended process is shown as repeatedly
suspending and retrying. However, this does not necessarily indicate that the computation is
frozen: between an event retry r(tl, ,tn) and a subsequent event
suspend r(t1, ,tn), the clause search process might have actualy made some
progress, for example, matching some of the argumentst 1, _, t n, or partly executing some
of the clause guards. An event suspend r(t1, ,tn) might not even mean that the
clause search is suspended: it may be that a deep guard has executed as far as allowed by the
depth bound, so the search is being deferred.

Whenever an uncommitted clause search process suspends, as shown by the event
suspend r(t1, ,tn), it remembers the exact state of its search so that when it is
rescheduled no work will be repeated.

10.6.7 Tuning the scheduler’s behaviour

The depth bound may be changed to any value not less than 1, using the dept h (directive)
primitive: see Section 9.3. The default value, 1, yields breadth-first execution, while a very
large value approximates to depth-first execution. Adjusting the depth bound provides a way
to experiment with some of the different orders of execution steps permitted by a program.

A smaller depth bound gives a more satisfying illusion of paralelism because each
process is tried more frequently, and it is more economical on evaluation memory space.
However, a larger depth bound is generally faster if some or all processes can do a lot of
computation (as opposed to suspension) because the process switching overhead is reduced.

56 Handson Parlog for Windows 1.0

This is especidly true if there are many other processes suspended, because it reduces the
proportion of time spent in busy waiting.

10.6.8 Execution speed and how to increase it
Theti cks/ 1 primitive can be used to measure a call’s execution time. The query:
ticks(Start) & ny_prog & ticks(End).

for example, will return values for St art and End such that End- St art represents the
approximate execution time of my _pr og in "ticks'. See Section 13.13 for more details on
ticks/ 1.

There are severa ways to increase the execution speed of a Parlog for Windows program.
First, the depth bound can be increased, as explained above. The danger with this is that
eventually the evaluation space might overflow; see below.

Second, because of the overhead of busy waiting, the number of suspended processes
should be minimized. If aparent process spawns several new processes that then suspend on
the same event, it is better to change the program so that the parent suspends before spawning
the new processes. It is usualy faster to sequence calls by using the sequential conjunction
operator than to use mode constraints for sequencing.

Finally, deep guards should be avoided as far as possible. If the opt i m ze directiveis
switched on (the default), Parlog for Windows performs a faster method of clause search for
procedures whose guards are empty. Directives are described in Sections 9.3 and 13.12.

10.6.9 Minimizing evaluation memory use

As noted in Section 9.5, the Parlog for Windows system allocates a fixed amount of memory
to any program evaluation; program execution will be aborted if this overflows, so it should
be used economically.

Evaluation space is used to store essential items such as processes and data structures, but
these should not normally cause an overflow unless your program is very large. Overflow is
more commonly caused by (a) heavy use of deep guards, and (b) alarge depth bound, both of
which can consume unexpectedly large amounts of evaluation space. To avoid the problem,
deep guards should be used only where necessary and the depth bound kept small; see above.

10.6.10 Minimizing code size

There are severa reasons for minimizing the size of the object code to which a Parlog for
Windows procedure is compiled. The obvious reason is to save program memory. Anocther
reason is that a compile-time error such as "Too Many Vari abl es" may result if the
code is too large. Even if the procedure compiles successfully, its large code size may
necessitate additional garbage collection during execution, which could dramatically reduce
the speed of the execution.

Unfortunately, the size of the object code is not ssimply related to the size of the source
Parlog procedure but is influenced by severa factors. Specifically, the object code tends to
be large if the opt i m ze directive is on and the sequentia clause search operator (’; ') is
heavily used, especially if the clause(s) before the ’; * contain a lot of matching or large
guards. To a lesser extent, code size is increased by use of the sequential conjunction
operator ('&).

Hands on Parlog for Windows 1.0 57

To minimize the object code size, you have three options:

. Make sure that you do not unnecessarily use sequential search or sequential conjunction.
In any case thisis bad Parlog programming style. Replace them by parallel operatorsif at
al possible.

. If you do need to use sequential clause search, design the program so that the procedures
with sequential search are as simple as possible. Thisagain is good programming style.

. If you encounter a compile-time error and all else fails, try switching off optimized
compilation. See Sections 9.3 and 13.12 for details. The problem is that the speed
advantages of optimized compilation will also be lost.

58 Handson Parlog for Windows 1.0

11 Error messages

This section describes the main error messages that you could get from Parlog for Windows.

Notice in particular that there is no error message for unsafe guards. (An unsafe guard is
one which might bind a variable in the parent call.) Parlog for Windows leaves to the
programmer the responsibility for guard safety: the system itself performs no check. If a
program is allowed to run which does not have the safe guards property then the result could
be failure or other unexpected behaviour, depending on the circumstances.

Also, Parlog for Windows does not provide an error message for deadlock; in the event of
deadlock, the system simply hangs.

11.1 Program structureerrors

Errors in the structure of a program are indicated by messages displayed in the console
window. These errors are non-fatal, in the sense that the computation is not immediately
aborted. The messages are of three kinds: indicating errors in the form of a query, a
procedure, or adirective.

11.1.1 Queryerrors

Whenever a query is read, either from the supervisor or from a program file (during al oad),
Parlog for Windows checks its structure. The following message is displayed if the query
Termisinvalid: i.e., either it has unbound variables in the place of relation calls, or it has the
variable output operators (., -7, m::’, n i) in the wrong order. After the error
message is displayed, the query fails.

*** jnvalid query: Term

11.1.2 Procedureerrors

Procedure errors may be displayed during the execution of | oad/ 1, which is the primitive
that reads in and checks programs. If an erroneous term is read, the offending term is
displayed in an error message; the | oad then continues.

*** jnvalid declaration: Term

Term is an invalid mode declaration: i.e., either you are attempting to redefine a
Parlog for Windows primitive, or the relation name begins with a space character, or
the mode specifiers are invalid.

*** enpty procedure: Term

No clauses have been defined for the procedure declared by the mode declaration
Term. This message will also appear if al clausesin the procedure areinvalid for any
reason.

*** undecl ared cl ause: Term

The clause Term is not preceded by a mode declaration. This message may also
appear as a consequence of aprevious"i nval i d decl arati on" error.

Hands on Parlog for Windows 1.0 59

*** jnconpatible clause: Term
The clause Term is incompatible with the preceding mode declaration: i.e,, it has a
different relation name or arity.

*** variable clause: Term
The clause Termis an unbound variable.

*** yariable head in: Term
The clause Term has a head which is an unbound variable.

*** pad 'if’ operator in: Term
The clause Term has an implication operator ": -’ instead of '<-".

*** pbad rhs in: Term

The clause Term has an invalid right hand side (guard and body): i.e., it has unbound
variables in the place of relation calls.

11.1.3 Directiveerrors

Invalid calls to directive primitives (Section 13.12) do not just fail: first, an explanatory
message is displayed in the synt ax window. A directive cal is invalid if it is for an
undefined relation (in the case of alocal directive), or its value is out of range. The message
displayedis:

*** jnvalid directive: Term

11.2 Compiler errors

The Parlog for Windows compiler itself should never fail, though run-time errors (see below)
may exceptionally occur at compilation time. However, if the compiler does fail, the
following message will be displayed in the console window:

Il conpiler failed

followed by a run-time error with code99. This should never happen; if it does, please
inform PLP.

11.3 Run-timeerrors

A run-time error may occur at any time. If it does, the evaluation is aborted immediately and
control returns to the supervisor. An error message is displayed, of the form:

error(52):
Arithnetic Overflow at 000444A4 is 1/ O

The message includes a numeric error code, a description of the error, and the call that is at
fault. The error codes range from 0 to 35, and the code 99, and each has a corresponding

60 Handson Parlog for Windows 1.0

description which should be self-explanatory. A few of the most common errors are
described below.

error(1): Backtrack Stack Full
error(2): Local Stack Full
error(3): Reset Stack Full
error(4): Heap Space Full
error(5): Text Space Full
error(6): Program Space Full

These indicate that one of the six memory areas has become full. Section 9.5 explains
the ways around this problem.

error(42): Syntax Error
error(48): End O File

These errors can occur at any time while Parlog for Windows is reading inpuit.
"Syntax Error" indicates that a term being read is syntactically illegal, while
"End O Fil e"indicatesthat aterm being read isincomplete.

Both errors are particularly likely to happen while loading a program into
memory. They are more fundamental errors than those described in Section 11.1.2,
since they cause the loading to be abandoned. However, if these errors occur during
input performed by the Parlog for Windows system, rather than by a Parlog program,
an informative message is displayed which includes the text of the term being read up
to the point where the error was detected. This should guide you to the cause of the
error, so that you can quickly correct it and reload the program.

error(45): Too Many Vari abl es

This error may occur at compilation time, if the Parlog for Windows procedure being
compiled is particularly complex. The causes of this error, and ways to overcome it,
are explained in detail in Section 10.6.10.

For the sake of completeness, we list below all of the error messages that could be
encountered. Some of them are not used in the current version of Parlog for Windows, and
many others are very unlikely to occur in practice.

1 Backtrack Stack Full
2 Local Stack Full

3 Reset Stack Full

4 Heap Space Full

5 Text Space Full

6 Program Space Ful |

7 Ext ernal Space Full

8 Machi ne Stack Ful |

9 Consol e Space Ful |

10 W ndow Handl i ng Error
11 Keyboar d Break

12 Mouse Handling Error
13 Graphi cs Handling Error
20 Predi cate Not Defi ned
21 Control Error

I nstanti ati on Error

N
N

23
24
25
26
30
31
32
33
34
35
40
41
42
43
44
45
46
47
48
50
51
52
53
60
61
62
63
64
65
66
67
68
99

Hands on Parlog for Windows 1.0

Type Error

Domai n Error

Too Many Argunents
Term Too Big

File Handling Error
File Not Found

Pat h Not Found

Too Many Files Open
Fil e Access Denied

Di sk Ful |

Format Not Defi ned
Format Field Overfl ow
Syntax Error

Bi nary Format Error
Checksum Err or

Too Many Vari abl es
String Too Long

At om Too Long

End O File

Function Not Defined
Arithmetic Underfl ow
Arithmetic Overflow
Arithmetic Error
Instruction Not Defined
Bad Nunmber O Argunents
Bad Argunent Type

Bad Regi ster Nunber
Label Not Defi ned
Label Al ready Defined
Too Many Label s

Bad Form O d ause
Predi cate Protected
Parl og for Wndows Conpil er

Err or

61

62 Handson Parlog for Windows 1.0

12 Menus

The menus of Parlog for Windows are summarized in this section.

12.1 TheFEi | e menu
12.1.1 TheNew. . . option

The 'Fi | e/ New. . . " option is used to create a new program window and associated disk
file.

A directory dialog box isinvoked, listing al fileswith a’.PAR’ extension, to select a disk
file to be associated with the new window. When afile is selected, an empty file is created
with the specified name and path, and a new empty window appears on the screen. The title
of the new window will be the same as the filename. If the selected file is one that already
exists, awarning message will appear, asking whether the file should be replaced.

12.1.2 TheOpen. .. option

The’Fi | e/ Open. . . "option is used to open an existing program file in awindow.

A directory dialog box isinvoked, listing all fileswith a’.PAR’ extension, to select a disk
file. When afileis selected, a program window appears on the screen with the same name as
the file, and the contents of the file are copied to the window. If the selected file does not
exist, an error message is displayed in the console window.

12.1.3 TheNew G oup. .. option

The 'Fi | e/ New Group. .. option is used to create a new program group file and open
the group. Thisoption is enabled only when no program windows are currently open.

A directory dialog box isinvoked, listing al files with a’.GRP extension, to select a disk
file. When afileis selected, an empty file is created with the specified name and path, and a
new empty program group is opened. This means that the group’s name (the same as its
filename) is added to the main window title, and all program files subsequently opened will
become part of the group. If the selected file is one that already exists, a warning message
will appear, asking whether the file should be replaced.

12.1.4 TheOpen G oup. .. option

The'Fi | e/ Open Group. ..’ menu option isused to open an existing program group file.
This option is enabled only when no program windows are currently open.

A directory dialog box isinvoked, listing all fileswith a’.GRP extension, to select a disk
file. When afileis selected, the program group stored in the file is opened. This means that
al program files belonging to the group are opened, the group’s name (the same as its
filename) is added to the main window title, and all program files subsequently opened will
become part of the group. If the selected file does not exist, an error message is displayed in
the console window.

Hands on Parlog for Windows 1.0 63

12.1.5 TheSave Al | option

The 'Fi | e/ Save Al |’ menu option is used to save the program windows and group (if
any) that are currently open.

All open program windows that have been edited since they were last opened, or since the
last 'Fi | e/ Save Al'l’ command, are saved by copying them into their respective
associated disk files. In addition, if a program group is open, it is saved into its associated
disk file if program windows have been opened or closed since the last 'Fi | e/ Save Al |’
command. This option is enabled only when there are program windows that need saving or
the open group needs saving.

12.1.6 Thed ose Al | option

The'Fi | e/ C ose Al |’ menu option is used to save the program windows and group (if
any) that are currently open and close them.

This option begins by automatically performing a 'Fi | e/ Save Al |’ command. In
addition, all open program windows are closed, the open program group (if any) is closed,
and the internal form of the program is deleted from memory.

12.1.7 The Exi t option

The'Fi | e/ Exi t’ menu option is used to save the program windows and group (if any) that
are currently open and exit from Parlog for Windows.

The effect of this command isthe same as 'Fi | e/ Save Al | . Following the save, the
system exits.

12.2 TheEdi t menu

The 'Edi t " menu contains the usual Windows text editing operations. Undo, Cut , Copy,
Paste, C ear, and Sel ect Al l. These can be used to cut and paste text within or
between windows, or between Parlog and other Windows applications.

12.3 The Sear ch menu
12.3.1 TheFi nd option

The’Sear ch/ Fi nd’ menu option is used to search for atext string in one or al windows.

A diaog is invoked, containing an edit box, a Fi nd button, and three radio buttons,
labelled 'Sel ect ed Text’, 'Current W ndow, and 'All W ndows’. The dialog is
modeless, so it can be left on display while other operations are performed. A text string
should be typed into the edit box and one of the radio buttons selected; when the Fi nd
button is clicked, the search will begin. If 'Current W ndow is chosen, the search will be
limited to the current window, which could be a program window, the console window, or
any other window within Parlog for Windows. If 'Al 1l W ndows’ is chosen, all program
windows (those created by the Fi | e menu options) will be searched. If the string is found,
the corresponding text in a window is highlighted. If the Fi nd button is clicked again, the
search will continue for further occurrences of the text string. When there are no further

64 Handson Parlog for Windows 1.0

occurrences, a message will report this but the dialog will remain on display until closed.

12.4 The Run menu
12.4.1 TheLoad Al | option

The’Run/ Load Al | " menu option is used to load the currently open program windows into
memory.

This option begins by automatically performing a’Fi | e/ Save Al | ' command. Then,
all open program windows that have been opened or edited since the last 'Run/ Load Al |’
command are loaded. This option is enabled only when there are program windows that need
loading.

The loading process checks the syntax and structure of the source program, and stores it
in memory in an internal form, which preserves al aspects of the source program except its
layout and comments. |f a procedure already exists with the same relation name and arity as
one being loaded, the new procedure silently replaces the old one, with no warning message.

If a program contains syntax errors, the loading is aborted and an error message appears
in the console window. If an error is found in the structure of the program, a message is
again displayed in the console window but the loading will continue. (See Section 11.1.2 for
an explanation of these error messages.) In either case, the 'Run/ Load Al |’ option
remains enabl ed.

12.4.2 TheQui t option

The 'Run/ Qui t " menu option is used to abort the execution of the current query, or other
activity, and return to the supervisor prompt.

This has the same effect as typing Ctr | - br eak, but can be easier to use in some
circumstances, particularly when dynamic windows are active.

12.4.3 TheTi dy W ndows option

The’Run/ Ti dy W ndows’ menu option is used to delete all dynamically created windows.

As described in Sections 5 and 6, Parlog for Windows can display variable bindings and
trace messages in dynamically created windows, whose initial size and position can be
specified by the wi ndows/ 5 primitive. The lifetime of these windows is the duration of a
query, but they are not necessarily closed when the query terminates. this is so that their
contents can be viewed at leisure. (They are automatically removed before the query is
executed.) This menu option can be used to immediately delete the windows, reducing
screen clutter, if they are no longer required.

12.5 The W ndowmenu
12.5.1 The Cascade option

This cascades the windows that are not currently iconized, placing each window below and to
the right of the previous one.

Hands on Parlog for Windows 1.0 65

12.5.2 TheTi | e option

This tiles the windows that are not currently iconized, placing the windows adjacent to each
other so that they do not overlap.

125.3 The Arrange | cons option

This arranges any iconized windows in the bottom left of the main window.

12.5.4 Thelower section

The remainder of the W ndow menu contains the names of all windows. Selecting a window
name from this menu will bring that window into focus. This is particularly useful if the
window has been completely hidden behind other windows.

66 Handson Parlog for Windows 1.0

13 Primitives

The primitives of Parlog for Windows are relations which have implicit, system-defined
procedures. They are documented in this section.

Primitives are grouped according to the function they perform. For each primitive is
described the (implicitly declared) modes; the synchronization, that is, the conditions under
which a call to the primitive suspends; and the behaviour, which is typicaly specified in
terms of bindings that are made to the call arguments in those cases where the call succeeds,
along with any possible side-effects. In addition, examples of calls are provided for some
primitives.

13.1 Arithmetic primitives

The arithmetic primitives include the equality and inequality relations=: =/ 2, =\ =/ 2, </ 2,
>/ 2, =</2, >=/2. All of these take two arguments which are arithmetic expressions
constructed using variables, numbers (real or integer), and certain predeclared operators. The
expression evaluator i s/ 2 takes just one expression argument and evaluatesit. All of these
primitives suspend until their expression arguments are ground.

The operators that may appear in expressions include the arithmetic functions '+’, - °, ™*’,
'/ ’, and nod, which are all infix operators, and a pseudo-random number generator r and:
rand(Li m t) evaluatesto arandom floating point number between O and Li mi t .

XN is Expression?

Synchronization Suspends until Expr essi on isground.
Behaviour Evaluates the arithmetic expression Expr essi on and unifies the result
with X.

Examples
X is 3+2*5-4 succeedswith X = 9

E1? == E2?

Synchronization Suspends until E1 and E2 are ground.
Behaviour Succeedsif arithmetic expressions E1 and E2 evaluate to the same value.

E1? =\= E2?

Synchronization Suspends until E1 and E2 are ground.
Behaviour Succeedsif arithmetic expressions E1 and E2 do not evaluate to the same
value.

E1? < E27?

Synchronization Suspends until E1 and E2 are ground.
Behaviour Succeeds if the result of evaluating arithmetic expression E1 is less than
that of E2.

Hands on Parlog for Windows 1.0 67

E1? > E2?

Synchronization Suspends until E1 and E2 are ground.
Behaviour Succeeds if the result of evaluating arithmetic expression E1 is greater
than that of E2.

E1? =< E27

Synchronization Suspends until E1 and E2 are ground.
Behaviour Succeeds if the result of evaluating arithmetic expression E1 is less than
or equal to that of E2.

E1? >= E27?

Synchronization Suspends until E1 and E2 are ground.
Behaviour Succeeds if the result of evaluating arithmetic expression E1 is greater
than or equal to that of E2.

13.2 Unification related primitives

Parlog for Windows supports al of the standard Parlog unification-related primitives =/ 2
(full unification), ==/ 2 (test unification), <=/ 2 (one-way unification), data/ 1, and
var/ 1. In addition, there are three others provided for convenience: \ =/ 2, gr ound/ 1,
nonvar/ 1, and sane/ 2.

Of these primitives, only ==/ 2, <=/ 2, dat a/ 1, and ground/ 1 ever suspend; the
others always succeed or fail immediately.

Terml? = TernR?

Synchronization No suspension.
Behaviour Succeedsif termsTer nil and Ter n2 unify, and unifies them.

Ternml? \= Ter nRk?

Synchronization No suspension.
Behaviour Succeedsif termsTer nil and Ter n2 do not unify.

68 Handson Parlog for Windows 1.0

Terml? == Ter nR?

Synchronization Suspends if Ter mil and Ter n2 could be unified only by binding
variablesin either term.

Behaviour This is the test unification primitive of Parlog. It unifies Ter nil and
Ter n2 without binding variables in either term. It succeeds if Ter nil and Ter n2
are identical terms (even if they are not ground); it fails as soon as Ter nil and
Ter n? fail to match.

Examples
f(1,Y) == f(X 2) suspends
f(X) == f(Y) suspends
f(X) == (X succeeds
f(l) == 1f(1) succeeds

f(k,1) == f(Y,2) fals

same(Ternl?, Ter nR2?)

Synchronization No suspension.

Behaviour This performs an immediate, non-suspending check of whether two terms
areidentical. It succeedsif Ter mL and Ter n2 are identical terms (even if they are
not ground), otherwise it fails.

Examples
f(1,Y) == f(X 2) fals
f(X) == f(Y) fals
f(X) == (X succeeds
f(1) == 1f(1) succeeds

f(k,1) == f(Y,2) fals

Terml? <= Ter nR?

Synchronization Suspends if Ter mil and Ter n2 could be unified only by binding
variablesin Ter n2.

Behaviour Thisisthe one-way unification, or matching, primitive of Parlog. Unifies
Ter mL and Ter n2 without binding variables in Ter n2. It succeeds if Tern2 isa
substitution instance of Ter mil; it failsas soon as Ter mlL and Ter n® fail to match.

Examples
f(1) <= (X suspends
f(X) <= f(1) succeedswith X = 1
f(X) <= 1(Y) succeedswith X =Y

f(k,1) <= f(Y,2) fals

var (Ter nf?)

Synchronization No suspension.
Behaviour Succeedsif Ter misan unbound variable, failsif Ter misinstantiated.

Hands on Parlog for Windows 1.0 69

nonvar (Ter nf?)

Synchronization No suspension.
Behaviour Succeedsif Ter misinstantiated, failsif Ter mis an unbound variable.

dat a(Ter n?)

Synchronization Suspends until Ter mis instantiated.
Behaviour Succeeds.

ground(Ter n?)

Synchronization Suspends until Ter mis ground.
Behaviour Succeeds.

13.3 Type checking primitives

The type checking primitives are atom’ 1, i nteger/ 1, fl oat/ 1, nunber/1, and
at om c/ 1. Each suspends until its argument is instantiated, when the primitive succeeds or
fails according to the argument’s type.

at on(Ter n?)

Synchronization Suspends until Ter mis instantiated.
Behaviour Succeedsif Ter misan atom.

I nt eger (Ter nP?)

Synchronization Suspends until Ter mis instantiated.
Behaviour Succeedsif Ter misan integer (i.e., has a zero fraction part).

fl oat (Ter n®?)

Synchronization Suspends until Ter mis instantiated.
Behaviour Succeedsif Ter mis afloating point number (i.e., has a non-zero fraction

part).

nunber (Ter nf?)

Synchronization Suspends until Ter misinstantiated.
Behaviour Succeedsif Ter misanumber, either integer or floating point.

at om c(Ter n®?)

Synchronization Suspends until Ter misinstantiated.
Behaviour Succeedsif Ter mis either an atom or a number.

70 Handson Parlog for Windows 1.0

13.4 Metalevel primitives

The metalevel primitives include those which are used to construct and dissect terms. They
include the structure manipulators ar g/ 3 and funct or/ 3, the list/structure converter
=../ 2, the string/character code list converter nanme/ 2, and an atom concatenating
primitivecat / 2.

Another group deals with variables inside terms: var si n/ 2 can be used to find out the
variables in a term, and t ogr ound/ 3 replaces a term’s variables. Both of these, like
var/ 1 and nonvar/ 1, should be used carefully, as their behaviour depends upon the
current binding state of a term, which will change if its variables are bound by another
process. t ohol | ow 3 performs the converse function of t ogr ound/ 3: they can be used
together to convert between ground and hollow forms of aterm.

arg(N?, Tern?, Arg")

Synchronization Suspends until Nand Ter mare instantiated.
Behaviour Unifies Ar g with the Nth argument of Ter m

functor (Tern?, Functor?, Arity?)

Synchronization Suspends until Ter mis instantiated or Funct or and Arity are
Instantiated.

Behaviour If Ter mis instantiated, Funct or and Ari ty will be unified with the
function name and arity, respectively, of Ter m

If Funct or and Ari ty areinstantiated, Ter mwill be unified with the most genera
term having the specified function name and arity.

Tern? =.. List?

Synchronization Suspends until Ter mis instantiated or Li st is bound to a finite-
length list whose head is instantiated.

Behaviour If Ter mis instantiated, Li st is unified with a list whose head is the
functor of Ter mand whose remaining members are the arguments of Ter m

If Li st is instantiated to a finite-length list whose head is instantiated, Ter mis
unified with a term whose functor is the head of Li st and whose arguments are the
remaining membersof Li st .

Examples
T =.. [likes, bob, Z] succeedswith
T = |ikes(bob, 2)
foo(a,b,c) =.. L succeeds with

L = [foo, a, b, c]
T=. XY suspends

Hands on Parlog for Windows 1.0 71

name(Atom c?, Stri ng?)

Synchronization Suspends until At omi ¢ isinstantiated or St r i ng is ground.
Behaviour If At om c is instantiated (it must be an atom or number), unifies
St ri ng with thelist of character codesin its name.

If Stringisground (it must be alist of character codes), unifies At om ¢ with the
number, if possible, otherwise the atom, containing those characters.

Examples
name(bob, S) succeedswithS = [98, 111, 98]
nane(X, "bob") succeedswith X = bob
name(X, "123") succeedswith X = 123
nane(Char, [65]) succeedswith Char = " A
nane(A, S) suspends

cat (At ons?, At ont")

Synchronization Suspends until At ornrs is ground.
Behaviour Unifies At omwith an atom constructed by concatenating all atoms in the
list At ons.

var si n(Ter n?, Var s")

Synchronization No suspension.
Behaviour Unifies Var s with a list of all of the variables in term Ter m Each
variable will appear exactly oncein Var s.

Examples
var si n(bob, V) succeedswithV = []
varsin(f(X Y, a, X),V) succeedswithV = [X, Y]

t oground(Ter n??, Gt er nt*, Var nanes”)

Synchronization No suspension.

Behaviour Unifies G er m with a ground copy of term Ter m constructed by
replacing each of the variables in Ter m by an atom taken successively from the
sequence 'A’, 'B’, 'C, etc. Variablesthat appear only oncein Ter mare replaced by the
atom’_". A list of the variable names (atoms) used is unified with Var nanes.

Examples
toground(X, G V) succeedswithG = ' ', V = [7 ']
toground(f (X Y, a, X), G V) succeedswith

G=f(CA, _,a 'A),
V=[A, 7]

72 Hands on Parlog for Windows 1.0

t ohol | om(G er n®?, Ter n*, Var nanes?)

Synchronization Suspends until G er mand Var nanes are ground.
Behaviour Unifies Ter m with a "hollow" copy of term G er m constructed by
replacing each of the atomsin Gt er mthat also appear in Var nanes (alist of atoms)
by avariable; all occurrences of an atom are replaced by the same variable. Also, the
' ' aom is replaced by a unique variable, regardless of whether it appears in
Var nanes.
Examples

tohollowm’™ ', T,[]) succeeds with T unbound

tohollowm(f(" A, ',a, 'A), T,["A," '])

succeedswithT = f (X, Y, a, X)

13.5 Control primitives

The control primitives are those which (with the exception of t rue/ 0 and f ai | / 0) take
arguments which represent relation calls to be executed. The standard cal | / 1 primitive
does no more than evaluate the call and then succeed or fail depending on the outcome.
cal | /3 is the control metacall which never fails and which makes possible tight
supervision over an evaluation. Both versions of cal | suspend until their arguments are
terms that could represent valid Parlog for Windows conjunctions (i.e., conjunctions which
do not have unbound variables in the place of relation calls), as does not/ 1, which
Implements negation as failure.

true

Synchronization No suspension.
Behaviour Succeeds.

fail

Synchronization No suspension.
Behaviour Fails.

not Conj ?

Synchronization Suspends until Conj isbound to avalid Parlog conjunction.
Behaviour Evaluates the Parlog conjunction Conj . Succeeds if Conj fails, fails if
Conj succeeds.

cal |l (Conj ?)

Synchronization Suspends until Conj isbound to avalid Parlog conjunction.
Behaviour Evaluatesthe Parlog conjunction Conj . Succeedsif Conj succeeds, fails
if Conj fails.

Hands on Parlog for Windows 1.0 73

cal | (Conj ?, St at us”™, Control ?)

Synchronization Suspends until Conj isbound to avalid Parlog conjunction.
Behaviour Evaluates the Parlog conjunction Conj . If Conj succeeds, St at us is
unified with the atom succeeded. If Conj fails, St at us isunified with the atom
fail ed.

If Control is bound to the atom st op, the evaluation of Conj is aborted and
Cont r ol isunified with the atom st opped.

If Control is bound to a list [suspend|C], Status is unified with
[suspend| S] and the evaluation of Conj issuspended if itisactive. If Cont r ol
iIsbound to alist [conti nue| C], St at us is unified with [conti nue| S] and
the evaluation of Conj isreactivated if it is suspended. In either case the evaluation
proceeds with S and Creplacing St at us and Cont r ol .

If Cont r ol isbound to any other term, the metacall fails.

13.6 Database primitives

The set/ 3 and subset / 3 primitives implement the interface between "single-solution”
Parlog relations and "all-solutions' database relations.

set (Sol nlist”, Tern?, Dbcal | ?)

Synchronization Suspendsuntil Dbcal | isinstantiated.
Behaviour Thisisthe eager set constructor primitive. The behaviour of the call is to
bind Sol nl i st to a complete list of terms each representing an individual solution
to the database relation call Docal | . The relation for Docal | is expected to be
defined by code compiled from a modeless set of assertions (unit clauses each
terminated by a period) declared by adat abase declaration. If no such code exists,
or if thereare no solutionsto Dbcal | , then Sol nl i st will return the empty list.
The evaluation of acall to set/ 3 is asequential search through the defining clauses
for the relation, with full unification used for al pairs of arguments. During this
evaluation (which is quite fast) no concurrent activity with any other process is
performed.
Examples
If 1'i kes/ 2 isadatabase relation with the definition:

l'ikes(jill,mary).

i kes(karen,jill).

l'ikes(jill,ian).
then the computed solution for S to the call:

set (S, Person,likes(jill,Person))

is:
S =[mry,ian].

74 Hands on Parlog for Windows 1.0

subset (Sol nli st?, Tern?, Docal | ?).

Synchronization Suspends until Docal | isinstantiated.

Behaviour Thisisthelazy set constructor primitive. Aswithset/ 3, Sol nli st is
a list of terms each representing an individual solution to the database relation call
Dbcal | . However, with subset / 3 the terms are produced lazly, that is, they are
produced only in response to demands represented by variables supplied for
Sol nl'i st, and the final value of Sol nl i st may represent only a proper subset of
the complete set of solutions. A call to subset / 3 succeeds and terminates when the
consumer process closes thislist.

If the supply of variablesfor Sol nl i st exceedsthe availability of solutions then the
surplus variables are bound to the constant end.

The evauation of a call to subset/ 3 is a lazy sequential search through the
defining clauses for the relation, with full unification used for all pairs of arguments.
The progress of the evaluation is constrained by the supply of demand variables and,
In general, other processes can be active concurrently with subset / 3.

Example
If1'i kes/ 2 isadatabase relation with the definition:
likes(jill,mary).
i kes(karen,jill).
likes(jill,ian).
then the computed solution to the query:
S = [P1,P2,P3], subset(S, Person,likes(jill,Person)).
is.
Pl = mary
P2 = ian
P3 = end

13.7 Input and output primitives

Most of the input and output primitives of Parlog for Windows are available in two forms:
one that does 1/0 to the default channel and another to do the 1/0 to a named channel. The
default channel for input and output is the console window. The second form of /O
primitive takes an extra argument which is the name of the desired channel. A channel name
can be the name of afile or awindow, or the reserved atom user , which names the default
channel. A named file should be opened before, and closed after, performing 1/0 to it; see
Section 13.8.

There are four main input primitives: the term input primitive r ead, and the character-
oriented primitives get O, get , and ski p (al of which are available in both one-argument
and two-argument forms). Another primitive, gr ead/ 2, isthe same asr ead/ 2 except that
it treats any variables in terms as atoms.

All of these can be used to input from files, windows, or the default channel user.
When reading from user , the input is actually done via the console window: the user can
type the input and edit it, typing Ret ur n to terminate. In contrast, the get key/ 1 primitive
obtains its input (a character) invisibly: it is not displayed in any window and cannot be
edited beforeit is consumed by the system.

All of the input primitives cause the entire Parlog for Windows system to suspend until
the specified input is complete. However, there is a special primitive key/ 1, which
suspends until any key is pressed; this is useful because its suspension will not cause the

Hands on Parlog for Windows 1.0 75

suspension of other concurrent processes.

A higher-level facility which provides asynchronous incremental input of streams is
provided by thei n_streani 1 and i n_streans/ 1 primitives; these are also described
in some detail in Section7. They are intended to give support to program testing and
debugging, rather than acting for application software 1/0.

There are six main output primitives. the term output primitiveswrite, wri t eq, and
di spl ay, and the character-oriented primitives nl, put, and tab (al of which are
available in two forms. with and without a channel argument). The other one,
I ncwritel/ 2, outputs a ground term incrementally to a named channel, suspending
whenever it reaches an unbound variable.

read(Ter nt)

Synchronization No suspension.
Behaviour Unifies Ter mwith the next term read from user, i.e., from the console
window. Until the input is complete, any concurrent processes will be suspended.

r ead(Channel ?, Ter m")

Synchronization Suspends until Channel isinstantiated.

Behaviour Unifies Ter m with the next term read from Channel. A cdl
read(user, Tern) is equivaent to read(Term . For a file or window, the
atomend_of _fil e isreturned when the end of the channel has been reached.

get key(N\NY)

Synchronization No suspension.

Behaviour Reads the next character directly from the keyboard, i.e., without echoing
it and without going through the console window, and unifies the character code of
thiswith N. Until the input is complete, any concurrent processes will be suspended.

get O(\NY)

Synchronization No suspension.

Behaviour Reads the next character from user, i.e., from the console window, and
unifies the character code of this with N. Until the input is complete, any concurrent
processes will be suspended.

get O(Channel ?, N")

Synchronization Suspends until Channel isinstantiated.

Behaviour Reads the next character from Channel and unifiesthe character code of
thiswith N. If the end of Channel has been reached, in the case of afile or window,
Nisunified with-1. A call get O(user, N) isequivalenttoget O(N) .

76 Handson Parlog for Windows 1.0

get (NV)

Synchronization No suspension.

Behaviour Reads the next character that is not a space or control character from
user, i.e, from the console window, and unifies the character code of this with N.
Until the input is complete, any concurrent processes will be suspended.

get (Channel ?, NV)

Synchronization Suspends until Channel isinstantiated.

Behaviour Reads the next character that is not a space or control character from
Channel and unifies the character code of thiswith N. If the end of Channel has
been reached, in the case of a file or window, N is unified with -1. A call
get (user, N) isequivalenttoget (N) .

ski p(N?)

Synchronization Suspends until Nis ground.

Behaviour Reads charactersfrom user , i.e., from the console window, until the next
character whose ASCII code is N. N must be either an integer or an arithmetic
expression that evaluates to an integer; a particularly useful form of thisis a single-
character double-quoted string. For example, ski p(".") is equivalent to
ski p(46) and will advance to immediately after the next occurrence of the period
character.

ski p(Channel ?, N?)

Synchronization Suspends until Channel isinstantiated and Nis ground.

Behaviour Advances the channel pointer for Channel toimmediately after the next
character whose ASCII codeis N. Nis either an integer or an arithmetic expression
that evaluatesto aninteger. A cal ski p(user, N) isequivaent toski p(N).

gr ead(Channel ?, Ter nt*)

Synchronization Suspends until Channel isinstantiated.

Behaviour Unifies Ter mwith a "grounded" (variable-free) copy of the next term
read from Channel . Differsfrom r ead in that variables such as X are read not as
variables but as atoms with the same name (e.g. * X'). For afile or window the atom
end_of _fil e isreturned when the end of the channel has been reached.

key(NV)

Synchronization Suspends until any key is pressed.

Behaviour Reads the next character directly from the keyboard, i.e., without echoing
it and without going through the console window, and unifies the character code of
thiswith N. Unlike get key/ 1, this primitive does not force the suspension of other
ProCesses.

Hands on Parlog for Windows 1.0 77

I n_strean(Streant)

Synchronization No suspension.

Behaviour Binds St r eamto a list containing terms typed at the keyboard. The
terms may be supplied incrementally into an input dialog which is summoned when
any key is pressed.

The user may type any term into this didlog. When the OK button is clicked, the
dialog is removed and the terms are entered into the stream. If instead Cancel is
clicked, the dialog is removed without affecting the stream in any way. In either of
these cases, the input dialog can be restored at any time in the future by pressing any
key. If End is clicked, the stream is closed (ignoring any term typed) and the
i n_strean 1 processterminates.

Usethei n_streanm 1 primitive (instead of r ead/ 1, for example) whenever you
want to test a program which is to be incrementally supplied with data. This
primitive is "concurrent friendly" in that other processes, possibly including one or
more processes which are consumers of St r eam may be active concurrently with
I n_stream 1 during the periods when the input dialog is not on display.

The system definition of i n_st rean 1 includes acall to key/ 1 (described in this
section). This means that it is not normaly useful to have more than one
in_stream 1 process, or an i n_streani 1 with a key/ 1 process, active
concurrently. Usei n_st r eans/ 1 to program multiple stream keyboard inpui.

i n_streans(Streans?)

Synchronization Suspends until St reans is bound to a finite-length list all of
whose members are instantiated.

Behaviour This primitive is a multiple-stream version of in_streani 1.
St reans should be a list of terms each of the form c(C) where ¢ is a single
character atom representing a "wakeup" key and C is the variable which is to receive
the corresponding binding. No two termsin the list may have the same wakeup key.
Thelist may include aterm ot her (V) , which must appear at the end of the list; then
every key other than those named elsewhere on the list acts as a wakeup key for the
variable V. The call failsunless St r eans specifiesalist of thisform.

To enter terms onto one of the streams, press its wakeup key. For example, if
St r eans includestheterm b(B) , typing 'b’ will produce an input dialog into which
aterm can be typed; this term will be output on list B. Similarly, list B can be closed
by typing ‘b’ and then clicking End.

Once a stream has been closed, thei n_st r eans/ 1 process ceases to recognize that
stream’s wakeup key. Ani n_streans/ 1 process will terminate only when all of
its streams have been closed by the user.

It is not useful to haveani n_st reans/ 1 process active concurrently with another
i n_streans/ 1 process, orani n_stream 1 process, or akey/ 1 process.

78

Hands on Parlog for Windows 1.0

wite(Tern®)

Synchronization No suspension.

Behaviour Writes the term Ter mto user, i.e, to the console window. Current
operator declarations are reflected. Atoms that would need to be quoted on input
(such as "a nane’ or 'Henry’) are not quoted. Variables are displayed as
underscore names.

wri t e(Channel ?, Ter n®?)

Synchronization Suspends until Channel isinstantiated.
Behaviour Writes the term Ter mto Channel , inthe sameformat aswite/ 1. A
calwite(user, Term isequivaenttowite(Term.

writeq(Tern®)

Synchronization No suspension.

Behaviour Writes the term Ter mto user, i.e., to the console window. Atoms are
guoted if necessary, so that they can be read back in by r ead, and current operator
declarations are reflected.

wr it eq(Channel ?, Ter n?)

di spl

di spl

nl

Synchronization Suspends until Channel isinstantiated.
Behaviour Writes the term Ter mto Channel , in the same format aswri t eq/ 1.
Acadlwiteqg(user, Tern) isequivdenttow i teq(Term.

ay(Ter nP)

Synchronization No suspension.

Behaviour Writes the term Ter mto user, i.e., to the console window, in prefix
notation, i.e., ignoring operator declarations, and with atoms quoted if necessary, so
that they can be read back in by r ead.

ay(Channel ?, Ter n?)

Synchronization Suspends until Channel isinstantiated.
Behaviour Writes the term Ter mto Channel , in the same format as di spl ay/ 1.
A cdl di spl ay(user, Term isequivaenttodi spl ay(Term.

Synchronization No suspension.
Behaviour Startsanew lineon user , i.e., the console window.

nl (Channel ?)

Synchronization Suspends until Channel isinstantiated.
Behaviour Startsanew lineon Channel . A cdl nl (user) isequivaenttonl .

Hands on Parlog for Windows 1.0 79

put (N?)

Synchronization Suspends until Nis ground.

Behaviour Writes the character whose ASCII codeis N to user , i.e., to the console
window. N is ether an integer or an arithmetic expression that evaluates to an
integer; a particularly useful form of this is a single-character double-quoted string.
E.g.,put (".") isequivalent to put (46) and will output a period character.

put (Channel ?, N?)

Synchronization Suspends until Channel isinstantiated and Nis ground.
Behaviour Writes the character whose ASCII code is Nto Channel . Niseither an
integer or an arithmetic expression that evaluates to an integer. A call
put (user, N) isequivaenttoput (N) .

t ab(N?)

Synchronization Suspends until Nis ground.
Behaviour Writes N spaces to user, i.e, to the console window. N is either an
integer or an arithmetic expression that evaluates to an integer.

t ab(Channel ?, N?)

Synchronization Suspends until Channel isinstantiated and Nis ground.
Behaviour Writes N spaces to Channel . N is ether an integer or an arithmetic
expression that evaluates to an integer. A call tab(user, N) is equivaent to

tab(N).

I ncw i te(Channel ?, Ter n?)

Synchronization Suspends until Channel isinstantiated.

Behaviour Writes Ter mto Channel incrementally, suspending if it attempts to
write an unbound variable, until the variable is bound. The format used is the same as
di spl ay/ 2, i.e, current operator declarations are ignored and atoms are quoted if
necessary, so that the term can be read back in by r ead.

13.8 File, window, and dialog handling primitives

The primitives below are concerned with providing access to files and windows rather than
actually performing the 1/0 (for which see Section 13.7).

To perform file input and output, the name of the file (which must first be opened by a
call toopen/ 1 orcreate/ 1, and cl osed afterwards) must appear as the first argument
of one of the I/O primitives.

Output to a window is done in a similar way, opening the window first by crwi nd/ 5
and closing it afterwards, by cl ose/ 1.

Another primitive in this section, di al og/ 4, alows the creation of a simple dialog,
which is extremely useful for multi-window applications, whileti t| e/ 1 allows the main
window title to be changed.

80 Handson Parlog for Windows 1.0

open(File?)

Synchronization Suspends until Fi | e isinstantiated.
Behaviour OpensFi | e, which must name afile that already exists, for read access.

create(File?)

Synchronization Suspends until Fi | e isinstantiated.
Behaviour Creates a new file Fi | e and opens it for write access. If afile of that
name already existed, it is replaced: no backup copy of it is created.

crw nd(Name?, R?, C?, Dept h?, W dt h?)

Synchronization Suspends until Nane, R, C, Dept h, and W dt h are ground.
Behaviour Creates a new window named Nane, with depth Dept h rows and width
W dt h columns, its top left corner positioned at row R, column C. Note that the
window coordinates are rows and columns, rather than pixels. The screen area is
considered to comprise 25 rows, numbered from O (top) to 24 (bottom), and 80
columns, numbered from O (left) to 79 (right). A call to cr wi nd/ 5 does not change
the current window.

cuwi nd(Name?)

Synchronization Suspends until Nane isinstantiated.

Behaviour Changes the current window to Nane. The default current window is the
console window, which is named by the integer 1, so to return to normal, call
cuw nd(1).

cl ose(Nane?)

Synchronization Suspends until Nane isinstantiated.

Behaviour Closes the file or window named Nane. Always use this primitive when
you are finished writing to a file. The effect of closing a window is to delete the
window and all of its contents.

di al og(Nanme?, Message?, Opti ons?, Sel ecti on”)

Synchronization Suspends until Nane, Message, and Opt i ons are ground.
Behaviour Creates a modeless dialog named Nane (an atom), which displays a
message and a nhumber of buttons. The message is the concatenation of the ground
terms contained in the list Message. Thereisone button for each member of the list
Opt i ons, each labelled by the corresponding member (an atom) of Opt i ons.

After displaying the dialog, Parlog for Windows waits until one of the buttons is
clicked, and then unifies Sel ect i on with the button label (an atom) for the clicked
button.

Hands on Parlog for Windows 1.0 81

title(Title?)

Synchronization Suspendsuntil Ti t | e isinstantiated.
Behaviour Replaces the title of the main Parlog for Windows window by Ti t | e, an
atom.

13.9 Program handling primitives

This section describes primitives that allow you to add, delete, inspect, and edit source
programs. Many of them take aRel at i ons argument to specify the relation(s) to be listed,
etc. This argument takes the form Relation name/Arity, or Relation name, or alist of these,

eg.

filter
mer ge/ 3
[go/ 0, filter, mergel/ 3]

Any relations named may be either Parlog relations or database relations.

| oad(Channel ?)

isti

Synchronization Suspends until Channel isinstantiated.
Behaviour Readsin a Parlog for Windows program from Channel , which must be
user or the name of afile. If no file extension is specified, .PAR’ is assumed. The
syntax and structure of a program is checked as it is read in; any syntax error will
abort the | oad/ 1 process, whereas errors in the structure of the program simply
cause an error message to be displayed (in the console window) and the offending
term ignored.
If Channel is user you can type a program into the console window. Type
Escape to terminate the editing and load the program,; this is not recommended, as
the source program is not stored in adisk file and can easily be lost.
A Parlog for Windows program may comprise Parlog procedures (preceded by a
node declaration), database procedures (preceded by a dat abase declaration), and
gueries. |If a program contains a procedure for a relation that is aready defined, the
existing procedure will be replaced by the new one, without warning.
A query in aprogram (aterm of the form):

<- Conjunction.
is executed at the time that the program is loaded. No indication is given of its
success or failure, though an error will cause the | oad/ 1 call to be abandoned with
an appropriate error message.

ng

Synchronization No suspension.

Behaviour Lists the whole of the loaded program to the console window. Global
directives are listed, as queries, at the beginning of the program. Local directives
associated with arelation are listed immediately after the procedure for that relation.

82 Handson Parlog for Windows 1.0

l'isting(Rel ations?)

Synchronization Suspends until Rel at i ons isground.

Behaviour Liststhe procedures for those relations specified by Rel at i ons that are
currently defined, to the console window. Global directives are not listed; local
directives associated with arelation are listed immediately after the procedure for that
relation.

save(Channel ?)

Synchronization Suspends until Channel isinstantiated.

Behaviour Liststhe whole of the loaded program to Channel , in the same format as
| i sting/0. Channel must beuser or the name of afile. If no file extension is
specified, ".PAR’ isassumed. save(user) isequivaenttol i sti ng.

save(Channel ?, Rel ati ons?)

Synchronization Suspends until Channel is instantiated and Rel ati ons is
ground.

Behaviour Liststhe procedures for those relations specified by Rel at i ons that are
currently loaded, to Channel , inthe sameformat asl i sti ng/ 1. Channel must
be user or the name of afile. If no file extension is specified, .PAR’ is assumed.
save(user, Rel ati ons) isequivalenttol i sti ng(Rel ati ons).

kill(Rel ati ons?)

Synchronization Suspends until Rel at i ons isground.
Behaviour Deletes procedures, and local directives, for the relations specified in
Rel ati ons.

reinitialize

Synchronization No suspension.

Behaviour Deletes the entire program currently defined, including all directives.
Also resets the Parlog for Windows system to its initial state, except that (unlike the
'Fi | e/ d ose Al |’ menu option) program windows are not closed.

defi ned(Rel ati on?)

Synchronization Suspends until Rel at i on isground.

Behaviour Succeeds if Rel ati on is aterm of the form Relation name/ Arity that
names a relation that is currently defined by a Parlog procedure. Note that this
primitive succeeds only for user-defined Parlog relations, not for primitives or
database relations.

13.10 Compilation primitives

The compilation of Parlog for Windows programs is normally invisible but, for convenience,

Hands on Parlog for Windows 1.0 83

a conpi | e/ O primitive is provided, to force immediate compilation. Another primitive
affecting compilationisf ast code/ 0.

Neither of these primitives is necessary, but conpi | e/ 0 can be useful to avoid the
distraction of lazy compilation, while f ast code/ 0 can be used to increase execution speed
following a debugging session.

conpil e

Synchronization No suspension.

Behaviour Compiles all relations currently defined that need compiling. A relation
needs compiling if its source form and object form are inconsistent, i.e., if, since the
relation was last compiled:

» its procedure has been changed (by meahsafl), or

» adirective affecting the relation has been changed, or

» channel spypoints have been set or removed on this relation, or

» trace mode has been switched on, or

* process spypoints have been set for the first time (on any relation).

f ast code

Synchronization No suspension.

Behaviour Causes the Parlog for Windows compiler to generate regular (rather than
traceable; see Section 6.12.3) code in future compilations, though it does not
immediately do the compilation. It will have no effect if trace mode is switched on or

If any process spypoints are set, because process tracing requires the presence of
traceable code. It is worth calling this primitive after a process tracing session has
ended, because regular code is faster than traceable code, and the change is not made

automatically.

13.11 Debugging primitives

The debugging facilities of Parlog for Windows are described in detail in Section 6. Here,
we summarize the primitives that are used to control the action of the debugger. These
include primitives to switch various debugging parameters on and off and to configure the
trace model. The other primitive described in this sectiom idows/ 5, which can be used
to configure the layout of the windows that are dynamically created for both tracing and
dynamic output of variable bindings.

The default values of the tracing parameters are as though the following calls were
executed when the Parlog for Windows system was (re)initialized:

notrace,

debug,

nospyal |,

debug_opti ons(on, on, on),
wi ndow_debug,

wi ndows(1, 5, 40, 4, 39).

84

trace

Hands on Parlog for Windows 1.0

Synchronization No suspension.

Behaviour Switches on trace mode. When the system is in trace mode, the process
tracer is invoked for each query issued from the supervisor, except for queries
comprising just asingle primitive call. Queries embedded in programs are not traced.

notrace

debug

nodeb

Synchronization No suspension.
Behaviour Switches off trace mode.

Synchronization No suspension.
Behaviour Switches on debug mode. When the system is in debug mode, both
process and channel spypoints are observed, otherwise they have no effect.

ug

Synchronization No suspension.
Behaviour Switches off debug mode.

spy Rel ation?

nospy

nospy

Synchronization Suspendsuntil Rel at i on isinstantiated.

Behaviour Sets a process spypoint on the relation(s) specified by Rel ati on. If
Rel at i on takes the form Relation name/Arity a spypoint is set on the specified
relation if it is defined (not a primitive); if Rel ati on is just a relation name, a
spypoint is set on all currently defined relations with the given name, regardless of
their arity. If Rel at i on isany other term, a conditional process spypoint is added,
to trace calls that unify with the term.

Rel ati on?

Synchronization Suspendsuntil Rel at i on isinstantiated.

Behaviour Removes process spypoints and channel spypoints from the relation(s)
specified by Rel ati on. Rel at i on may take the form Relation name/Arity, or just
arelation name, in which case spypoints are removed from all relations with the given
name, regardless of their arity. If Rel ati on is any other term, al conditional
process spypoints unifying with the term are removed.

al |

Synchronization No suspension.
Behaviour Removesall (process and channel) spypoints.

Hands on Parlog for Windows 1.0 85

debug_opti ons(Suspend?, Reduce?, Succeed?)

Synchronization Suspends until Suspend, Reduce, and Succeed are ground.
Behaviour Each of Suspend, Reduce, Succeed must be either on or of f;
otherwise the call fails. This primitive is used to configure the trace model (see
Section 6.12.2). If Suspend is on, suspend and retry events are traced. If
Reduce ison, r educe eventsaretraced. If Succeed ison, succeed andf ai |
eventsaretraced. Inany case, cal | events are always traced.

wi ndow_debug

Synchronization No suspension.

Behaviour Switches on window-debug mode. When the system is in this mode, all
trace messages are displayed in dynamically created windows, one window for each
process.

now ndow_debug

Synchronization No suspension.

Behaviour Switches off window-debug mode. Trace messages are now all displayed
in the current window. This is more confusing than using dynamic windows, but it
has the advantage that the relative speeds of the processes are more obvious. Also, it
saves memory.

wi ndows(S?, R?, C?, Dept h?, W dt h?)

Synchronization Suspendsuntil S, R, C, Dept h, and W dt h are ground.

Behaviour S, R, and C must be non-negative integers, Dept h must be an integer
between 1 and 24 inclusive, W dt h must be between 1 and 79 inclusive; otherwise
the call fails.

This primitive is used to configure the size and positions of the dynamically created
windows. These windows are used both for trace messages (when window-debug
mode is switched on), and for dynamic display of variable bindings in incremental or
film format; see Sections 5 and 6.

Dept h and W dt h specify the size of the scrolling area of each window, i.e., the size
excluding borders. The other three arguments control the positioning of the windows.
The first dynamic window is always placed at the top left corner of the screen. If Cis
not O, subsequent windows are placed in the same vertical position, but each is shifted
right by C columns.

If CisO, or if the windows have reached the right side of the screen, the next window
will be placed at the |eft of the screen, but shifted down by R rows (unlessRis 0).

If Ris O, or if the windows have reached the bottom of the screen, the next window
will be placed at the left of the screen near the top, but shifted downward by S rows
relative to the topmost window(s) on the previous screen.

13.12 Directive primitives

As explained in Section 9.3, the directive primitives are used to set or remove global or local

86 Handson Parlog for Windows 1.0

directives, which associate a value with one of two options. opt i m ze and dept h.

These options, and their possible values, are explained in this section. If a directive
primitive is called with an invalid value, or (in the case of alocal directive) arelation that is
not defined, an error message "invalid directive" is displayed in the console window, and the
cal then fails.

The default values of the directives are as though the following calls were executed when
the Parlog for Windows system was (re)initialized:

(optim ze on), (depth 1).

optim ze Val ue?

Synchronization Suspends until Val ue isground.

Behaviour If Val ue takes the form Relation name/Arity, any local directive for
opt i m ze will be removed from the named relation.

Otherwise, Val ue must be on or of f ; thisis a global directive. opti m ze on
causes the compiler to perform certain optimizations when compiling procedures;
these usually increase the run-time speed and reduce the size of the object code
generated. opti m ze of f causes unoptimized code to be generated; there should
normally be no reason to select this, but see Section 10.6.10.

opti m ze(Rel ati on?, Val ue?)

Synchronization Suspends until Rel at i on isground and Val ue isinstantiated.
Behaviour Rel at i on, of the form Relation name/Arity, must name arelation that is
currently defined. Val ue must be on or of f. opti m ze(Rel ati on, on) or
optim ze(Rel ation,of f) adds a local directive that determines whether
optimized code is generated for Rel at i on, and overrides any global directive for
optim ze.

dept h Val ue?

Synchronization Suspends until Val ue isground.

Behaviour If Val ue takes the form Relation name/Arity, any local directive for
dept h will be removed from the named relation.

Otherwise, Val ue must be apositive integer; thisisaglobal directive. The code will
be compiled in such a way that the evaluation depth (see Section 10.6.7) of each call
is bounded to the depth specified by Val ue.

dept h(Rel ati on?, Val ue?)

Synchronization Suspends until Rel at i on isground and Val ue isinstantiated.
Behaviour Rel at i on, of the form Relation name/Arity, must name arelation that is
currently defined. Val ue must be apositiveinteger. dept h(Rel ati on, Val ue)
adds alocal directive that sets the evaluation depth (see Section 10.6.7) to Val ue for
Rel at i on, and overrides any global directive for dept h.

Hands on Parlog for Windows 1.0 87

13.13 Miscellaneous primitives

This section documents primitives which have not been described el sewhere.

free(Br, LA, RN, HY, TA, PA)

Synchronization No suspension.

Behaviour Returns the amount of memory space (in Kbytes) remaining in each of the
four areas. B (backtrack stack space), L (local stack space), R (reset stack space), H
(heap space), T (text space), P (program space).

remenber (1d?, Ter n?)

Synchronization Suspends until | d isinstantiated.

Behaviour Associates Ter m an arbitrary term, with the atom | d; it can subsequently
be retrieved by recal | / 2. Any variables in Ter mare copied (replaced by new
variables). This providesaform of global assignment.

recal | (1d?, Ternt)

Synchronization Suspends until | d isinstantiated.

Behaviour Unifies Ter mwith the term that is currently associated with the atom | d;
this must have been done previously by r enenber/ 2. Fails if there is no term
associated with | d.

op(Precedence?, Type?, Nane?)

Synchronization Suspends until Pr ecedence and Type are instantiated and Nane
isground.

Behaviour Declares the atom Nane to be an operator with the specified precedence
and type. Type should be one of f x, fy, xf, yf, xfx, xfy, yfx. Precedence
should be an integer between 1 and 1200. Nane should be an atom, or alist of atoms,
in which case al atomsin the list are declared as operators with the same precedence
and type.

The Parlog for Windows system starts with many operators already declared. These
arelisted in Section 10.4.

current _op(Precedence?, Type?, Nanme?, Qps”)

Synchronization No suspension.
Behaviour Finds all (or some) of the currently declared operators. Ops is unified
with alist containing aterm op(P, T, N) for each declared operator with precedence
P, type T ad name N such that op(P, T,N) unifies with
op(Precedence, Type, Nane). Any of the arguments Pr ecedence, Type or
Nane may be uninstantiated variables.
Example

current _op(_, ,(<-), Ops)

succeeds with
Ops = [op(1075,fx, (<-)),op(1075, xfx, (<-))]

88 Handson Parlog for Windows 1.0

ticks(Tine?)

Synchronization No suspension.
Behaviour Unifies Ti ne with an integer representing the current time. A tick is a
unit of about 1/4660 seconds.

hal t

Synchronization No suspension.
Behaviour Exitsfrom Parlog for Windows.

Index of primitives

< /2,65
<=/2, 67
=/2, 66
=..12,69

=< /2, 66
==/2, 67
=:=/2,65
=\=1/2, 65

> /2, 66

>= /2, 66
\=/2, 66
arg/3, 69
atom/1, 68
atomic/1, 68
cal/l, 71
cal/3, 72
cat/2, 70
close/1, 79
compile/0, 82
create/1, 79
crwind/5, 79
current_op/4, 86
cuwind/1, 79
data/l, 68
debug/0, 83
debug_options/3, 83
defined/1, 81
depth/1, 85
depth/2, 85
dialog/4, 79
display/1, 77
display/2, 77
fail/0, 71
fastcode/0, 82

float/1, 68
free/6, 85
functor/3, 69
get/1, 75
get/2, 75
get0/1, 74
get0/2, 74
getkey/1, 74
gread/2, 75
ground/1, 68
halt/O, 86
in_stream/1, 76
in_streams/1, 76
incwrite/2, 78
integer/1, 68
i5/2, 65

key/1, 75
kill/1, 81
listing/0, 80
listing/1, 80
load/1, 80
name/2, 70
nl/0, 77

nl/1, 77
nodebug/0, 83
nonvar/1, 68
nospy/1, 83
nospyall/0, 83
not/1, 71
notrace/0, 83

nowindow_debug/0, 84

number/1, 68
op/3, 86
open/l, 78

Hands on Parlog for Windows 1.0

optimize/1, 85
optimize/2, 85
put/1, 77
put/2, 78
read/1, 74
read/2, 74
recall/2, 86
reinitialize/0, 81
remember/2, 86
same/2, 67
savel/l, 81
save/2, 81
Set/3, 72
skip/1, 75
skip/2, 75
spy/1, 83
subset/3, 73
tab/1, 78
tab/2, 78
ticks/1, 86
title/1, 79
toground/3, 70
tohollow/3, 71
trace/0, 82
true/O, 71
var/l, 67
varsin/2, 70
window_debug/0, 84
windows/5, 84
write/l, 76
write/2, 77
writeg/1, 77
writeg/2, 77

89

